Что такое sin и cos. Основные тригонометрические тождества

Как найти синус?




Изучение геометрии помогает развивать мышление. Этот предмет обязательно входит в школьную подготовку. В жизнедеятельности знание этого предмета может пригодиться - например, при планировке квартиры.

Из истории

В рамках курса геометрии изучается также тригонометрия, которая исследует тригонометрические функции. В тригонометрии мы изучаем синусы, косинусы, тангенсы и котангенсы угла.

Но на данный момент начнем с самого простого - синуса. Давайте рассмотрим более детально самое первое понятие - синус угла в геометрии. Что такое синус и как его найти?

Понятие «синус угла» и синусоиды

Синус угла - это соотношение значений противоположного катета и гипотенузы прямоугольного треугольника. Это прямая тригонометрическая функция, которая на письме обозначается как «sin (x)», где (х) - угол треугольника.

На графике синус угла обозначается синусоидой со своими особенностями. Синусоида выглядит как непрерывная волнообразная линия, которая лежит в определенных рамках на плоскости координат. Функция нечетная, поэтому симметрична относительно 0 на плоскости координат (выходит из начала отсчета координат).

Область определения этой функции лежит в диапазоне от -1 до +1 на декартовой системе координат. Период функции синус угла составляет 2 Пи. Это означает, что каждые 2 Пи рисунок повторяется, и синусоида проходит полный цикл.

Уравнение синусоиды

  • sin х = a / c
  • где а - противолежащий к углу треугольника катет
  • с - гипотенуза прямоугольного треугольника

Свойства синуса угла

  1. sin (x) = - sin (x). Эта особенность демонстрирует, что функция симметрична, и если отложить на системе координат в обе стороны значения х и (-х), то ординаты этих точек будут противоположными. Они будут находиться на равном расстоянии друг от друга.
  2. Еще одной особенностью этой функции является то, что график функции возрастает на отрезке [- П/2 + 2 Пn]; [П/2 + 2Пn], где n - любое целое число. Убывание графика синуса угла будет наблюдаться на отрезке: [ П/2 + 2 Пn]; [ 3П/2 + 2Пn].
  3. sin (x) > 0, когда х лежит в диапазоне (2Пn, П + 2Пn)
  4. (x) < 0, когда х находится в диапазоне (-П+2Пn, 2Пn)

Значения синусов угла определяются по специальным таблицам. Созданы такие таблицы для облегчения процесса подсчета сложных формул и уравнений. Она легка в использовании и содержит значения не только функции sin (x), но также и значения других функций.

Более того, таблица стандартных значений этих функций включена к обязательному изучению на память, как таблица умножения. Особенно это актуально для классов с физико-математическим уклоном. В таблице можно увидеть значения основных используемых в тригонометрии углов: 0, 15, 30, 45, 60, 75, 90, 120, 135, 150, 180, 270 и 360 градусов.

Также существует таблица, определяющая значения тригонометрических функций нестандартных углов. Пользуясь разными таблицами, можно без труда вычислить синус, косинус, тангенс и котангенс некоторых углов.

С тригонометрическими функциями составляются уравнения. Решать эти уравнения легко, если знать простые тригонометрические тождества и приведения функций, например, такие, как sin (П/2 + х) = cos (x) и другие. Для таких приведений также составлена отдельная таблица.

Как найти синус угла

Когда стоит задача найти синус угла, а по условию у нас есть только косинус, тангенс, или котангенс угла, мы легко можем вычислить нужное с помощью тригонометрических тождеств.

  • sin 2 x + cos 2 x = 1

Исходя из этого уравнения, мы можем найти как синус, так и косинус, в зависимости от того, какое значение неизвестно. У нас получится тригонометрическое уравнение с одним неизвестным:

  • sin 2 x = 1 - cos 2 x
  • sin x = ± √ 1 - cos 2 x
  • ctg 2 x + 1 = 1 / sin 2 x

Из этого уравнения можно найти значение синуса, зная значение котангенса угла. Для упрощения замените sin 2 x = у, и тогда у вас получится простое уравнение. Например, значение котангенса равно 1, тогда:

  • 1 + 1 = 1/у
  • 2 = 1 / у
  • 2у = 1
  • у = 1/2

Теперь выполняем обратную замену игрека:

  • sin 2 x = ½
  • sin x = 1 / √2

Поскольку мы взяли значение котангенса для стандартного угла (45 0), полученные значения можно проверить по таблице .

Если у вас дано значение тангенса, а нужно найти синус, поможет еще одно тригонометрическое тождество:

  • tg x * ctg x = 1

Из этого следует, что:

  • ctg x = 1 / tg x

Для того чтобы найти синус нестандартного угла, например, 240 0 , необходимо воспользоваться формулами приведения углов. Мы знаем, что π у нас соответствует 180 0 . Таким образом, мы выразим наше равенство с помощью стандартных углов путем разложения.

  • 240 0 = 180 0 + 60 0

Нам необходимо найти следующее: sin (180 0 + 60 0). В тригонометрии есть формулы приведения, которые в данном случае пригодятся. Это формула:

  • sin (π + х) = - sin (х)

Таким образом, синус угла 240 градусов равен:

  • sin (180 0 + 60 0) = - sin (60 0) = - √3/2

В нашем случае, х = 60, а П, соответственно, 180 градусам. Значение (-√3/2) мы нашли по таблице значений функций стандартных углов.

Таким образом можно разложить нестандартные углы, например: 210 = 180 + 30.

Инструкция

Используйте функцию арксинус для вычисления величины угла в градусах, если известно значение этого угла. Если угол обозначить буквой α, в общем виде решение можно записать так: α = arcsin(sin(α)).

Если у вас есть возможность пользоваться компьютером, для практических расчетов проще всего использовать встроенный операционной системы. В последних двух версиях ОС Windows его можно запустить так: нажмите клавишу Win, наберите «ка» и надавите Enter. В более ранних выпусках этой ОС ссылку «Калькулятор» ищите в подразделе «Стандартные» раздела «Все программы» главного меню системы.

После запуска приложения переключите его в режим, позволяющий работать с тригонометрическими функциями. Сделать это можно выбором строки «Инженерный» в разделе «Вид» меню калькулятора или нажатием клавиш Alt + 2.

Введите значение синуса. По умолчанию в интерфейсе калькулятора нет кнопки для вычисления арксинуса. Чтобы возможность использовать эту функцию, вам нужно инвертировать значения кнопок по умолчанию - кликните по клавише Inv в окне программы. В более ранних версиях эту кнопку заменяет чекбокс с таким же обозначением - поставьте в нем отметку.

Можно использовать в расчетах и различные -сервисы, которых более чем достаточно в интернете. Например, перейдите на страницу http://planetcalc.com/326/, прокрутите ее немного вниз и в поле Input введите значение синуса. Для запуска процедуры вычисления здесь предназначена кнопка с надписью Calculate - кликните по ней. Результат вычислений вы найдете в первой строке таблицы под этой кнопкой. Кроме арксинуса в ней отображаются и величины , и арккотангенса введенного значения.

Обратная синусу тригонометрическая функция называется арксинусом . Она может принимать значения, лежащие в пределах половины числа Пи как в положительную, так и в отрицательную стороны при измерении в радианах. При измерении в градусах эти значения будут находиться, соответственно, в диапазоне от -90° до +90°.

Инструкция

Некоторые «круглые» значения не обязательно вычислять, проще их запомнить. Например:- если аргумент функции равен нулю, то значение арксинуса от него тоже равно нулю;- от 1/2 равен 30° или 1/6 Пи, если измерять ;- арксинус от -1/2 равен -30° или -1/6 от числа Пи в ;- арксинус от 1 равен 90° или 1/2 от числа Пи в радианах;- арксинус от -1 равен -90° или -1/2 от числа Пи в радианах;

Для измерения значений этой функции от других аргументов проще всего воспользоваться стандартным калькулятором Windows, если под рукой есть . Чтобы запустить раскройте главное меню на кнопке «Пуск» ( или нажатием клавиши WIN), перейдите в раздел «Все программы», а затем в подраздел «Стандартные» и щелкните пункт «Калькулятор».

Переключите интерфейс калькулятора в тот режим работы, который позволяет вычислять тригонометрические функции. Для этого откройте в его меню раздел «Вид» и выберите пункт «Инженерный» или «Научный» (в зависимости от используемой операционной системы).

Введите значение аргумента, от которого надо вычислить арктангенс. Это можно делать, щелкая кнопки интерфейса калькулятора мышкой, или нажимая клавиши на , или скопировав значение (CTRL + C) и затем вставив его (CTRL + V) в поле ввода калькулятора.

Выберите единицы измерения, в которых вам нужно получить результат вычисления функции. Ниже поля ввода помещены три варианта, из которых вам нужно выбрать (щелкнув его мышкой) одни - , радианы или рады.

Поставьте отметку в чекбоксе, который инвертирует функции, указанные на кнопках интерфейса калькулятора. Рядом с ним стоит короткая надпись Inv.

Щелкните кнопку sin. Калькулятор инвертирует привязанную к ней функцию, произведет вычисление и представит вам результат в заданных единицах измерения.

Видео по теме

На прямоугольном треугольнике, как наипростейшем из многоугольников, разные ученые мужи оттачивали свои знания в области тригонометрии еще в те времена, когда эту область математики никто даже не называл таким словом. Поэтому указать автора, выявившего закономерности в соотношениях длин сторон и величин углов в этой плоской геометрической фигуре, сегодня не представляется возможным. Такие соотношения названы тригонометрическими функциями и поделены на несколько групп, основной из которых условно считаются «прямые» функции. К этой группе отнесены всего две функции и одна из них - синус.

Инструкция

По определению в прямоугольном треугольнике один из углов равен 90°, а в силу того, что сумма его углов в евклидовой геометрии обязана быть равной 180°, два других угла являются (т.е. 90°). Закономерности соотношений именно этих углов и длин сторон и описывают тригонометрические функции.

Функция, называемая синусом острого угла, определяет соотношение между длиной двух сторон прямоугольного треугольника, одна из которых лежит напротив этого острого угла, а другая примыкает к нему и лежит напротив прямого угла. Так как сторона, лежащая напротив прямого угла в таком треугольнике, называется гипотенузой, а две другие - катетами, то функции синус можно сформулировать как соотношение между длинами катета и гипотенузы.

Кроме такого простейшего определения этой тригонометрической функции и более сложные: через окружность в декартовых координатах, через ряды, через дифференциальных и функциональных уравнений. Эта функция непрерывна, то есть ее аргументами («областью определений») может быть любое число - от бесконечно отрицательного до бесконечно положительного. А максимум значений этой функции ограничены диапазоном от -1 до +1 - это «область ее значений». Минимальное значение синус принимает при угле в 270°, что соответствует 3/ Пи, а максимальное получается при 90° (½ от Пи). Нулевыми значения функции становятся при 0°, 180°, 360° и т.д. Из всего этого вытекает, что синус является функцией периодической и период ее равен 360° или удвоенному числу Пи.

Для практических расчетов значений этой функции от заданного аргумента можно использовать - абсолютное большинство из них (включая программный калькулятор, встроенный в операционную систему вашего компьютера) имеет соответствующую опцию.

Видео по теме

Синус и косинус - это прямые тригонометрические функции, для которых существует несколько определений - через окружность в декартовой системе координат, через решения дифференциального уравнения, через острые углы в прямоугольном треугольнике. Каждое из таких определений позволяет вывести зависимость между этими двумя функциями. Ниже приведен самый, пожалуй, простой способ выразить косинус через синус - через их определения для острых углов прямоугольного треугольника.

Инструкция

Выразите синус острого угла прямоугольного треугольника через длины сторон этой фигуры. Согласно определению, синус угла (α) должен быть отношению длины стороны (a), лежащей напротив него - катета - к длине стороны (c), противолежащей прямому углу - гипотенузы: sin(α) = a/c.

Найдите аналогичную формулу для косинус а того же угла. По определению эта величина должна выражаться отношением длины стороны (b), примыкающей к этому углу (второго катета), к длине стороны (c), лежащей напротив прямого угла: cos(а) = a/c.

Перепишите равенство, вытекающее из теоремы Пифагора, таким образом, чтобы в нем были задействованы соотношения между катетами и гипотенузой, выведенные на двух предыдущих шагах. Для этого сначала разделите обе исходного этой теоремы (a² + b² = c²) на квадрат гипотенузы (a²/c² + b²/c² = 1), а затем полученное равенство перепишите в таком виде: (a/c)² + (b/c)² = 1.

Замените в полученном выражении соотношения длин катетов и гипотенузы тригонометрическими функциями, исходя из формул первого и второго шага: sin²(а) + cos²(а) = 1. Выразите косинус из полученного равенства: cos(a) = √(1 - sin²(а)). На этом задачу можно решенной в общем виде.

Если кроме общего нужно получить численный результат, воспользуйтесь, например, калькулятором, встроенным в операционную систему Windows. Ссылку на его запуск в подразделе «Стандартные» раздела «Все программы» меню ОС. Эта ссылка сформулирована лаконично - «Калькулятор». Чтобы иметь возможность вычислять с этой программы тригонометрические функции включите ее «инженерный» интерфейс - нажмите комбинацию клавиш Alt + 2.

Введите в условиях значение синуса угла и кликните по кнопке интерфейса с обозначением x² - так вы возведете исходное значение в квадрат. Затем наберите на клавиатуре *-1, нажмите Enter, введите +1 и нажмите Enter еще раз - таким способом вы вычтите из единицы квадрат синуса. Щелкните по клавише со значком радикала, чтобы извлечь квадратный и получить окончательный результат.

Изучение треугольников ведется математиками на протяжении нескольких тысячелетий. Наука о треугольниках - тригонометрия - использует специальные величины: синус и косинус.

Прямоугольный треугольник

Изначально синус и косинус возникли из-за необходимости рассчитывать величины в прямоугольных треугольниках. Было замечено, что если значение градусной меры углов в прямоугольном треугольнике не менять, то соотношение сторон, насколько бы эти стороны ни изменялись в длине, остается всегда одинаковым.

Именно так и были введены понятия синуса и косинуса. Синус острого угла в прямоугольном треугольнике – это отношение противолежащего катета к гипотенузе, а косинус – прилежащего к гипотенузе.

Теоремы косинусов и синусов

Но косинусы и синусы могут применяться не только в прямоугольных треугольниках. Чтобы найти значение тупого или острого угла, стороны любого треугольника, достаточно применить теорему косинусов и синусов.

Теорема косинусов довольно проста: «Квадрат стороны треугольника равен сумме квадратов двух других сторон за вычетом удвоенного произведения этих сторон на косинус угла между ними».

Существует две трактовки теоремы синусов: малая и расширенная. Согласно малой: «В треугольнике углы пропорциональны противолежащим сторонам». Данную теорему часто расширяют за счет свойства описанной около треугольника окружности: «В треугольнике углы пропорциональны противолежащим сторонам, а их отношение равно диаметру описанной окружности».

Производные

Производная - математический инструмент, показывающий, как быстро меняется функция относительно изменения ее аргумента. Производные используются , геометрии, и , ряде технических дисциплин.

При решении задач требуется знать табличные значения производных тригонометрических функций: синуса и косинуса. Производной синуса является косинус, а косинуса - синус, но со знаком «минус».

Применение в математике

Особенно часто синусы и косинусы используются при решении прямоугольных треугольников и задач, связанных с ними.

Удобство синусов и косинусов нашло свое отражение и в технике. Углы и стороны было просто оценивать по теоремам косинусов и синусов, разбивая сложные фигуры и объекты на «простые» треугольники. Инженеры и , часто имеющие дело с расчетами соотношения сторон и градусных мер, тратили немало времени и усилий для вычисления косинусов и синусов не табличных углов.

Тогда «на подмогу» пришли таблицы Брадиса, содержащие тысячи значений синусов, косинусов, тангенсов и котангенсов разных углов. В советское время некоторые преподаватели заставляли своих подопечных страницы таблиц Брадиса наизусть.

Радиан - угловая величина дуги, по длине равной радиусу или 57,295779513° градусов.

Градус (в геометрии) - 1/360-я часть окружности или 1/90-я часть прямого угла.

π = 3.141592653589793238462… (приблизительное значение числа Пи).

Таблица косинусов для углов: 0°, 30°, 45°, 60°, 90°, 120°, 135°, 150°, 180°, 210°, 225°, 240°, 270°, 300°, 315°, 330°, 360°.

Угол х (в градусах) 30° 45° 60° 90° 120° 135° 150° 180° 210° 225° 240° 270° 300° 315° 330° 360°
Угол х (в радианах) 0 π/6 π/4 π/3 π/2 2 x π/3 3 x π/4 5 x π/6 π 7 x π/6 5 x π/4 4 x π/3 3 x π/2 5 x π/3 7 x π/4 11 x π/6 2 x π
cos x 1 √3/2 (0,8660) √2/2 (0,7071) 1/2 (0,5) 0 -1/2 (-0,5) -√2/2 (-0,7071) -√3/2 (-0,8660) -1 -√3/2 (-0,8660) -√2/2 (-0,7071) -1/2 (-0,5) 0 1/2 (0,5) √2/2 (0,7071) √3/2 (0,8660) 1

Одним из разделов математики, с которыми школьники справляются с наибольшими трудностями, является тригонометрия. Неудивительно: для того чтобы свободно овладеть этой областью знаний, требуется наличие пространственного мышления, умение находить синусы, косинусы, тангенсы, котангенсы по формулам, упрощать выражения, уметь применять в вычислениях число пи. Помимо этого, нужно уметь применять тригонометрию при доказательстве теорем, а это требует либо развитой математической памяти, либо умения выводить непростые логические цепочки.

Истоки тригонометрии

Знакомство с данной наукой следует начать с определения синуса, косинуса и тангенса угла, однако прежде необходимо разобраться, чем вообще занимается тригонометрия.

Исторически главным объектом исследования данного раздела математической науки были прямоугольные треугольники. Наличие угла в 90 градусов дает возможность осуществлять различные операции, позволяющие по двум сторонам и одному углу либо по двум углам и одной стороне определять значения всех параметров рассматриваемой фигуры. В прошлом люди заметили эту закономерность и стали активно ею пользоваться при строительстве зданий, навигации, в астрономии и даже в искусстве.

Начальный этап

Первоначально люди рассуждали о взаимоотношении углов и сторон исключительно на примере прямоугольных треугольников. Затем были открыты особые формулы, позволившие расширить границы употребления в повседневной жизни данного раздела математики.

Изучение тригонометрии в школе сегодня начинается с прямоугольных треугольников, после чего полученные знания используются учениками в физике и решении абстрактных тригонометрических уравнений, работа с которыми начинается в старших классах.

Сферическая тригонометрия

Позже, когда наука вышла на следующий уровень развития, формулы с синусом, косинусом, тангенсом, котангенсом стали использоваться в сферической геометрии, где действуют иные правила, а сумма углов в треугольнике всегда больше 180 градусов. Данный раздел не изучается в школе, однако знать о его существовании необходимо как минимум потому, что земная поверхность, да и поверхность любой другой планеты, является выпуклой, а значит, любая разметка поверхности будет в трёхмерном пространстве «дугообразной».

Возьмите глобус и нитку. Приложите нитку к двум любым точкам на глобусе, чтобы она оказалась натянутой. Обратите внимание - она обрела форму дуги. С такими формами и имеет дело сферическая геометрия, применяющаяся в геодезии, астрономии и других теоретических и прикладных областях.

Прямоугольный треугольник

Немного узнав про способы применения тригонометрии, вернемся к базовой тригонометрии, чтобы в дальнейшем разобраться, что такое синус, косинус, тангенс, какие расчёты можно с их помощью выполнять и какие формулы при этом использовать.

Первым делом необходимо уяснить понятия, относящиеся к прямоугольному треугольнику. Во-первых, гипотенуза - это сторона, лежащая напротив угла в 90 градусов. Она является самой длинной. Мы помним, что по теореме Пифагора её численное значение равно корню из суммы квадратов двух других сторон.

Например, если две стороны равны 3 и 4 сантиметрам соответственно, длина гипотенузы составит 5 сантиметров. Кстати, об этом знали ещё древние египтяне около четырех с половиной тысяч лет назад.

Две оставшиеся стороны, которые образуют прямой угол, носят название катетов. Кроме того, надо помнить, что сумма углов в треугольнике в прямоугольной системе координат равняется 180 градусам.

Определение

Наконец, твердо понимая геометрическую базу, можно обратиться к определению синуса, косинуса и тангенса угла.

Синусом угла называется отношение противолежащего катета (т. е. стороны, располагающейся напротив нужного угла) к гипотенузе. Косинусом угла называется отношение прилежащего катета к гипотенузе.

Запомните, что ни синус, ни косинус не может быть больше единицы! Почему? Потому что гипотенуза - это по умолчанию самая длинная Каким бы длинным ни был катет, он будет короче гипотенузы, а значит, их отношение всегда будет меньше единицы. Таким образом, если у вас в ответе к задаче получился синус или косинус со значением, большим, чем 1, ищите ошибку в расчётах или рассуждениях. Этот ответ однозначно неверен.

Наконец, тангенсом угла называется отношение противолежащей стороны к прилежащей. Тот же самый результат даст деление синуса на косинус. Посмотрите: в соответствии с формулой мы делим длину стороны на гипотенузу, после чего делим на длину второй стороны и умножаем на гипотенузу. Таким образом, мы получаем то же самое соотношение, что и в определении тангенса.

Котангенс, соответственно, представляет собой отношение прилежащей к углу стороны к противолежащей. Тот же результат мы получим, разделив единицу на тангенс.

Итак, мы рассмотрели определения, что такое синус, косинус, тангенс и котангенс, и можем заняться формулами.

Простейшие формулы

В тригонометрии не обойтись без формул - как найти синус, косинус, тангенс, котангенс без них? А ведь именно это требуется при решении задач.

Первая формула, которую необходимо знать, начиная изучать тригонометрию, говорит о том, что сумма квадратов синуса и косинуса угла равна единице. Данная формула является прямым следствием теоремы Пифагора, однако позволяет сэкономить время, если требуется узнать величину угла, а не стороны.

Многие учащиеся не могут запомнить вторую формулу, также очень популярную при решении школьных задач: сумма единицы и квадрата тангенса угла равна единице, деленной на квадрат косинуса угла. Присмотритесь: ведь это то же самое утверждение, что и в первой формуле, только обе стороны тождества были поделены на квадрат косинуса. Выходит, простая математическая операция делает тригонометрическую формулу совершенно неузнаваемой. Помните: зная, что такое синус, косинус, тангенс и котангенс, правила преобразования и несколько базовых формул вы в любой момент сможете сами вывести требуемые более сложные формулы на листе бумаги.

Формулы двойного угла и сложения аргументов

Ещё две формулы, которые требуется выучить, связаны со значениями синуса и косинуса при сумме и разности углов. Они представлены на рисунке ниже. Обратите внимание, что в первом случае оба раза перемножается синус и косинус, а во втором складывается попарное произведение синуса и косинуса.

Также существуют формулы, связанные с аргументами в виде двойного угла. Они полностью выводятся из предыдущих - в качестве тренировки попробуйте получить их самостоятельно, приняв угол альфа равным углу бета.

Наконец, обратите внимание, что формулы двойного угла можно преобразовать так, чтобы понизить степень синуса, косинуса, тангенса альфа.

Теоремы

Двумя основными теоремами в базовой тригонометрии являются теорема синусов и теорема косинусов. С помощью этих теорем вы легко сможете понять, как найти синус, косинус и тангенс, а значит, и площадь фигуры, и величину каждой стороны и т. д.

Теорема синусов утверждает, что в результате деления длины каждой из сторон треугольника на величину противолежащего угла мы получим одинаковое число. Более того, это число будет равно двум радиусам описанной окружности, т. е. окружности, содержащей все точки данного треугольника.

Теорема косинусов обобщает теорему Пифагора, проецируя её на любые треугольники. Оказывается, из суммы квадратов двух сторон вычесть их произведение, умноженное на двойной косинус смежного им угла - полученное значение окажется равно квадрату третьей стороны. Таким образом, теорема Пифагора оказывается частным случаем теоремы косинусов.

Ошибки по невнимательности

Даже зная, что такое синус, косинус и тангенс, легко совершить ошибку из-за рассеянности внимания или ошибки в простейших расчётах. Чтобы избежать таких ошибок, ознакомимся с наиболее популярными из них.

Во-первых, не следует преобразовывать обыкновенные дроби в десятичные до получения окончательного результата - можно и ответ оставить в виде обыкновенной дроби, если в условии не оговорено обратное. Такое преобразование нельзя назвать ошибкой, однако следует помнить, что на каждом этапе задачи могут появиться новые корни, которые по задумке автора должны сократиться. В этом случае вы напрасно потратите время на излишние математические операции. Особенно это актуально для таких значений, как корень из трёх или из двух, ведь они встречаются в задачах на каждом шагу. То же касается округлений «некрасивых» чисел.

Далее, обратите внимание, что к любому треугольнику применима теорема косинусов, но не теорема Пифагора! Если вы по ошибке забудете вычесть удвоенное произведение сторон, умноженное на косинус угла между ними, вы не только получите совершенно неверный результат, но и продемонстрируете полное непонимание предмета. Это хуже, чем ошибка по невнимательности.

В-третьих, не путайте значения для углов в 30 и 60 градусов для синусов, косинусов, тангенсов, котангенсов. Запомните эти значения, ведь синус 30 градусов равен косинусу 60, и наоборот. Их легко перепутать, вследствие чего вы неизбежно получите ошибочный результат.

Применение

Многие ученики не спешат приступать к изучению тригонометрии, поскольку не понимают её прикладного смысла. Что такое синус, косинус, тангенс для инженера или астронома? Это понятия, благодаря которым можно вычислить расстояние до далёких звёзд, предсказать падение метеорита, отправить исследовательский зонд на другую планету. Без них нельзя построить здание, спроектировать автомобиль, рассчитать нагрузку на поверхность или траекторию движения предмета. И это только самые очевидные примеры! Ведь тригонометрия в том или ином виде используется повсюду, начиная от музыки и заканчивая медициной.

В заключение

Итак, вы синус, косинус, тангенс. Вы можете использовать их в расчётах и успешно решать школьные задачи.

Вся суть тригонометрии сводится к тому, что по известным параметрам треугольника нужно вычислить неизвестные. Всего этих параметров шесть: длины трёх сторон и величины трёх углов. Всё различие в задачах заключается в том, что даются неодинаковые входные данные.

Как найти синус, косинус, тангенс исходя из известных длин катетов или гипотенузы, вы теперь знаете. Поскольку эти термины обозначают не что иное, как отношение, а отношение - это дробь, главной целью тригонометрической задачи становится нахождение корней обычного уравнения либо же системы уравнений. И здесь вам поможет обычная школьная математика.

Таблица значений тригонометрических функций

Примечание . В данной таблице значений тригонометрических функций используется знак √ для обозначения квадратного корня. Для обозначения дроби - символ "/".

См. также полезные материалы:

Для определения значения тригонометрической функции , найдите его на пересечении строки с указанием тригонометрической функции. Например, синус 30 градусов - ищем колонку с заголовком sin (синус) и находим пересечение этой колонки таблицы со строкой "30 градусов", на их пересечении считываем результат - одна вторая. Аналогично находим косинус 60 градусов, синус 60 градусов (еще раз, в пересечении колонки sin (синус) и строки 60 градусов находим значение sin 60 = √3/2) и т.д. Точно так же находятся значения синусов, косинусов и тангенсов других "популярных" углов.

Синус пи, косинус пи, тангенс пи и других углов в радианах

Приведенная ниже таблица косинусов, синусов и тангенсов также подходит для нахождения значения тригонометрических функций, аргумент которых задан в радианах . Для этого воспользуйтесь второй колонкой значений угла. Благодаря этому можно перевести значение популярных углов из градусов в радианы. Например, найдем угол 60 градусов в первой строке и под ним прочитаем его значение в радианах. 60 градусов равно π/3 радиан.

Число пи однозначно выражает зависимость длины окружности от градусной меры угла. Таким образом, пи радиан равны 180 градусам.

Любое число, выраженное через пи (радиан) можно легко перевести в градусную меру, заменив число пи (π) на 180 .

Примеры :
1. Синус пи .
sin π = sin 180 = 0
таким образом, синус пи - это тоже самое, что синус 180 градусов и он равен нулю.

2. Косинус пи .
cos π = cos 180 = -1
таким образом, косинус пи - это тоже самое, что косинус 180 градусов и он равен минус единице.

3. Тангенс пи
tg π = tg 180 = 0
таким образом, тангенс пи - это тоже самое, что тангенс 180 градусов и он равен нулю.

Таблица значений синуса, косинуса, тангенса для углов 0 - 360 градусов (часто встречающиеся значения)

значение угла α
(градусов)

значение угла α
в радианах

(через число пи)

sin
(синус)
cos
(косинус)
tg
(тангенс)
ctg
(котангенс)
sec
(секанс)
cosec
(косеканс)
0 0 0 1 0 - 1 -
15 π/12 2 - √3 2 + √3
30 π/6 1/2 √3/2 1/√3 √3 2/√3 2
45 π/4 √2/2 √2/2 1 1 √2 √2
60 π/3 √3/2 1/2 √3 1/√3 2 2/√3
75 5π/12 2 + √3 2 - √3
90 π/2 1 0 - 0 - 1
105 7π/12 -
- 2 - √3 √3 - 2
120 2π/3 √3/2 -1/2 -√3 -√3/3
135 3π/4 √2/2 -√2/2 -1 -1 -√2 √2
150 5π/6 1/2 -√3/2 -√3/3 -√3
180 π 0 -1 0 - -1 -
210 7π/6 -1/2 -√3/2 √3/3 √3
240 4π/3 -√3/2 -1/2 √3 √3/3
270 3π/2 -1 0 - 0 - -1
360 0 1 0 - 1 -

Если в таблице значений тригонометрических функций вместо значения функции указан прочерк (тангенс (tg) 90 градусов, котангенс (ctg) 180 градусов) значит при данном значении градусной меры угла функция не имеет определенного значения. Если же прочерка нет - клетка пуста, значит мы еще не внесли нужное значение. Мы интересуемся, по каким запросам к нам приходят пользователи и дополняем таблицу новыми значениями, несмотря на то, что текущих данных о значениях косинусов, синусов и тангенсов самых часто встречающихся значений углов вполне достаточно для решения большинства задач.

Таблица значений тригонометрических функций sin, cos, tg для наиболее популярных углов
0, 15, 30, 45, 60, 90 ... 360 градусов
(цифровые значения "как по таблицам Брадиса")

значение угла α (градусов) значение угла α в радианах sin (синус) cos (косинус) tg (тангенс) ctg (котангенс)
0 0
15

0,2588

0,9659

0,2679

30

0,5000

0,5774

45

0,7071

0,7660

60

0,8660

0,5000

1,7321

7π/18

Тригонометрия - раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой науки внесли ученые Ближнего Востока и Индии.

Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии.

Yandex.RTB R-A-339285-1

Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

Определения тригонометрических функций

Синус угла (sin α) - отношение противолежащего этому углу катета к гипотенузе.

Косинус угла (cos α) - отношение прилежащего катета к гипотенузе.

Тангенс угла (t g α) - отношение противолежащего катета к прилежащему.

Котангенс угла (c t g α) - отношение прилежащего катета к противолежащему.

Данные определения даны для острого угла прямоугольного треугольника!

Приведем иллюстрацию.

В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.

Важно помнить!

Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тангенса и котангенса - вся числовая прямая, то есть эти функции могут принимать любые значения.

Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от - ∞ до + ∞ .

В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат.

Начальная точка A с координатами (1 , 0) поворачивается вокруг центра единичной окружности на некоторый угол α и переходит в точку A 1 . Определение дается через координаты точки A 1 (x , y).

Синус (sin) угла поворота

Синус угла поворота α - это ордината точки A 1 (x , y). sin α = y

Косинус (cos) угла поворота

Косинус угла поворота α - это абсцисса точки A 1 (x , y). cos α = х

Тангенс (tg) угла поворота

Тангенс угла поворота α - это отношение ординаты точки A 1 (x , y) к ее абсциссе. t g α = y x

Котангенс (ctg) угла поворота

Котангенс угла поворота α - это отношение абсциссы точки A 1 (x , y) к ее ординате. c t g α = x y

Синус и косинус определены для любого угла поворота. Это логично, ведь абсциссу и ординату точки после поворота можно определить при любом угле. Иначе обстоит дело с тангенсом и котангенсом. Тангенс не определен, когда точка после поворота переходит в точку с нулевой абсциссой (0 , 1) и (0 , - 1). В таких случаях выражение для тангенса t g α = y x просто не имеет смысла, так как в нем присутствует деление на ноль. Аналогично ситуация с котангенсом. Отличием состоит в том, что котангенс не определен в тех случаях, когда в ноль обращается ордината точки.

Важно помнить!

Синус и косинус определены для любых углов α .

Тангенс определен для всех углов, кроме α = 90 ° + 180 ° · k , k ∈ Z (α = π 2 + π · k , k ∈ Z)

Котангенс определен для всех углов, кроме α = 180 ° · k , k ∈ Z (α = π · k , k ∈ Z)

При решении практических примеров не говорят "синус угла поворота α ". Слова "угол поворота" просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь.

Числа

Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?

Синус, косинус, тангенс, котангенс числа

Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в t радиан.

Например, синус числа 10 π равен синусу угла поворота величиной 10 π рад.

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.

Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.

Начальная точка на окружности - точка A c координатами (1 , 0).

Положительному числу t

Отрицательному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t .

Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.

Синус (sin) числа t

Синус числа t - ордината точки единичной окружности, соответствующей числу t. sin t = y

Косинус (cos) числа t

Косинус числа t - абсцисса точки единичной окружности, соответствующей числу t. cos t = x

Тангенс (tg) числа t

Тангенс числа t - отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t. t g t = y x = sin t cos t

Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t , совпадает с точкой, в которую переходит начальная точка после поворота на угол t радиан.

Тригонометрические функции углового и числового аргумента

Каждому значению угла α соответствует определенное значение синуса и косинуса этого угла. Также, как всем углам α , отличным от α = 90 ° + 180 ° · k , k ∈ Z (α = π 2 + π · k , k ∈ Z) соответствует определенное значение тангенса. Котангенс, как сказано выше, определен для всех α , кроме α = 180 ° · k , k ∈ Z (α = π · k , k ∈ Z).

Можно сказать, что sin α , cos α , t g α , c t g α - это функции угла альфа, или функции углового аргумента.

Аналогично можно говорить о синусе, косинусе, тангенсе и котангенсе, как о функциях числового аргумента. Каждому действительному числу t соответствует определенное значение синуса или косинуса числа t . Всем числам, отличным от π 2 + π · k , k ∈ Z соответствует значение тангенса. Котангенс, аналогично, определен для всех чисел, кроме π · k , k ∈ Z.

Основные функции тригонометрии

Синус, косинус, тангенс и котангенс - основные тригонометрические функции.

Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело.

Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью соотношений сторон прямоугольного треугольника. Покажем это.

Возьмем единичную окружность с центром в прямоугольной декартовой системе координат. Повернем начальную точку A (1 , 0) на угол величиной до 90 градусов и проведем из полученной точки A 1 (x , y) перпендикуляр к оси абсцисс. В полученном прямоугольном треугольнике угол A 1 O H равен углу поворота α , длина катета O H равна абсциссе точки A 1 (x , y) . Длина катета, противолежащего углу, равна ординате точки A 1 (x , y) , а длина гипотенузы равна единице, так как она является радиусом единичной окружности.

В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе.

sin α = A 1 H O A 1 = y 1 = y

Значит, определение синуса острого угла в прямоугольном треугольнике через соотношение сторон эквивалентно определению синуса угла поворота α , при альфа лежащем в пределах от 0 до 90 градусов.

Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter