Простой инфракрасный сенсор. Датчик препятствия ик бампер Датчик определения препятствия

ИК-датчик препятствий для роботов-машин YL-63 (FC-51)
Smart Car Obstacle Avoidance Sensor Module Infrared Tube Module Reflective Photoelectric Sensor

Бесконтактный датчик YL-63 обнаруживает объекты в диапазоне расстояний почти от нуля и до установленного предела не вступая с ними в непосредственный контакт. Разные производители присваивают одному и тому же устройству разные наименования. Одни именуют представленный датчик наименованием YL-63 другие FC-51. Датчик предназначен для применения, когда не требуется информация о расстоянии до объекта, а только о его наличии или отсутствии. Предельная дистанция регистрации зависит от настройки. Датчик YL-63 имеет дискретный выход. Это оптический датчик регистрирующий увеличение интенсивности отраженного инфракрасного (ИК) излучения в контролируемом пространстве. Изменение отраженного излучения происходит из-за движущихся частей механизмов или перемещения окружающих предметов. YL-63 может размещаться на движущемся объекте для определения положения в окружающем пространстве. Применяется для обнаружения препятствия при движении колесных и гусеничных автоматов. Датчик может стать частью наглядного пособия для обучающихся в области систем управления и автоматики.
Устройство содержит источник ИК излучения и фотоприемник. Излучение отражается от препятствия и регистрируется фотоприемником. Он передает сигнал на компаратор LM393, который настроен на срабатывание при определенном уровне освещенности фотоприемника. Компаратор формирует сигнал на выходе датчика YL-63 низкого или высокого логического уровня.

Оптический датчик YL-63 относится к классу диффузионных. Название группы датчиков возникло из-за лежащего в основе работы датчика отражения излучения по множествам направлений - диффузии излучения отражающей поверхностью.
Работа устройства заключается в определении освещенности фотоприемника. Поскольку YL-63 фиксирует отраженное излучение, то возникает погрешность измерения расстояния, вызванная различной отражающей способностью поверхностей объектов изготовленных из разнообразных материалов.

Коэффициенты расстояния для отражения от различных материалов.

Белая матовая бумага 1
Хлопчатобумажная ткань 0,6
Серый поливинилхлорид 0,57
Дерево
слабо окрашенное 0,73
необработанное 0,4
Пластик
белый 0,7
черный 0.22
Черная резина 0,2-0,15
Матовый алюминий 1,2
Нержавеющая полированная сталь 2,3

Различное отражение и поглощение излучения различных материалов используются для работы воспринимающего узла тахометра. Предположим у нас есть . Требуется узнать количество оборотов в минуту вала двигателя. Нас выручит YL-63. Достаточно приклеить на маховик фрагмент белой бумаги, направить луч датчика на маховик и получим воспринимающий узел тахометра.
Для снижения последствий различных помех обрабатывающим микроконтроллером накапливаются данные полученные от датчика за короткий промежуток времени и производится усреднение. Датчик YL-63 может работать в приборах не имеющих МК.

Параметры

Напряжение питания 3,3-5 В
Дистанция обнаружения до отражающей белой матовой плоскости 0,02-0,3 м
Угол обнаружения 35°
Размеры 43 х 16 х 7 мм

Контакты

Датчик препятствия YL-63 он же FC-51 имеет вилку разъема из трех контактов:
VCC - питание,
GND - общий провод,
OUT - выход.

Индикаторы

На плате модуля расположено два индикатора. Свечение зеленого сообщает о включении питания. Красный светодиод светится если в зоне обнаружения находится объект.

Установка расстояния срабатывания

Настройку устройства облегчает работа индикатора обнаружения. Это позволяет настроить YL-63 он же FC-51 на срабатывание в реальных условиях. Установка чувствительности датчика выполняется с помощью переменного резистора, установленного на плате. Препятствие устанавливается на требуемом удалении от фотоприборов датчика. Поворотом подвижного контакта переменного резистора на плате модуля YL-63 выполняется установка расстояния срабатывания, добиваются включения красного светодиода. Затем проверяют дистанцию срабатывания перемещением отражающего объекта. Настройку повторяют не менее трех раз.

Программа для Ардуино обработки сигнала Y L-63

Сигнал датчика подается на контакт 12 Ардуино.

Void setup() {
Serial.begin (9600);
pinMode (12, INPUT);
}
void loop() {
Serial.print("Signaal: ");
Serial.println (digitalRead(12));
delay (500);
}

Устройство представляет собой простой цифровой датчик препятствия, ориентирующийся по отраженному инфракрасному излучению. Этот датчик был приобретен на Алиэкспресс. Принцип действия схож со схемой, которую недавно рассматривали


Инфракрасный датчик препятствия купленный на Али

Конструкция и параметры

Конструктивно датчик представляет собой печатную плату 31 x 14 мм, на плате имеется одно крепежное отверстие.


Инфракрасный датчик препятствия — плата печатная

Масса датчик 2,7 г. Для питания и передачи информации на датчике имеется трех контактный разъем, выводы которого промаркированы.


Трехконтактный разъем подключения датчика
  • Устройство питается постоянным напряжением в диапазоне от 3,3 до 5 В, ток потребления составляет 25 мА при напряжении питания 3,3 В и 40 мА при напряжении 5 В.

На датчике размещен инфракрасные светодиод и фотоприемник. Наличие препятствия определяется по интенсивности отраженного инфракрасного излучения. Подстроечным резистором на плате датчика можно установить требуемую чувствительность устройства. По заявлениям производителя датчик реагирует на препятствия в диапазоне от 2 до 30 см, угол зрения датчика 35 градусов. У автора получилось настроить датчик на препятствия в диапазоне 3-8 см, хотя возможно проблема в том, что испытывался только один датчик, к тому же угол зрения датчика, действительно весьма широк. Не следует также забывать, что различные поверхности отражают инфракрасное излучение по разному, более «блестящая», в данном диапазоне, поверхность будет обнаружена с большего расстояния, чем темная. В любом случае, этот датчик является «оружием ближнего боя».


ИК датчик препятствия — размер платы

Когда в поле зрения датчика появляется препятствие, на его информационном выходе устанавливается сигнал логического нуля. Если в поле зрения препятствия нет, то на выходе сигнал логической единицы. На плате датчика имеются два светодиода, один – индикатор питания, а другой — индикатор срабатывания датчика, который загорается при появлении в зоне видимости препятствия.

Подключение к Ардуино

По заявлению продавца датчик оптимизирован для Arduino, учитываю богатую, для столь простого устройства, индикацию и маркировку с этим можно легко согласиться.


ИК датчик препятствия с Ардуино

Для примера взаимодействия датчика с платформой Arduino, можно взять программу, которая зажигает светодиод, подключенный к 13 цифровому порту, по нажатию кнопки, подключенной к 12 цифровому порту платы Arduino UNO. Программа взята с сайта robocraft.ru

/*
* LED with button
*/

int ledPin = 13; // сетодиод
int btnPin = 12; // кнопка
int val=0;

void setup()
{
pinMode(ledPin, OUTPUT); // это выход — светодиод
pinMode(btnPin, INPUT); // а это вход — кнопка
Serial.begin(9600); // будем записывать в COM-порт
}

void loop()
{
val = digitalRead(btnPin); // узнаём состояние кнопки
if(val==HIGH) // кнопка нажата
{
digitalWrite(ledPin, HIGH); // зажигаем светодиод
Serial.println(«H»);
}
else // кнопка не нажата
{
digitalWrite(ledPin, LOW); // гасим светодиод
Serial.println(«L»);
}
delay(100);
}

Датчик при этом подключается вместо кнопки. После загрузки программы в память микроконтроллера, можно поэкспериментировать с разными режимами работы датчика.

Вывод о покупке

В целом неплохой дешевый датчик для систем сенсорного управления и ориентирования роботов. В последнем случае может, вероятно, быть альтернативой или дополнением, концевым выключателям, которые срабатывают при контакте робота с препятствием. Своих денег стоит. Denev

Описание и схема датчика препятствий на инфракрасных лучах, который собран на микросхеме К561ЛН2. Одна из задач, которую приходится решать при разработке самодельных бытовых электроприборов, движущихся игрушек и других подобных автоматизированных устройств, - обнаружение и обход препятствий, а так же, обнаружение преград и приближающихся предметов.

Использование для этих целей контактных датчиков не всегда удобно, потому что требует механического соприкосновения с препятствием, с некотором пороговым усилием, зависящим от конструкции датчика, что не всегда желательно. Намного более удобен, надежен и эффективен бесконтактный датчик, не ощупывающий препятствие, а видящий его.

Здесь приводится описание простого датчика, видящего в ИК-излучении, и сделанного из деталей от систем дистанцинного управления бытовой аппаратуры. Максимальная дальность обнаружения препятствий может достигать одного метра или больше, но если этого много (например, нужно реагировать на приближение всего на один сантиметр), его дальность очень просто уменьшить увеличением сопротивления резистора, включенного последовательно излучающему ИК-светодиоду.

Принципиальная схема

Схема датчика приведена на рисунке в тексте. Она выполнена на основе микросхемы К561ЛН2, содержащей шесть инверторов повышенной нагрузочной способности, и таких элементов систем дистанционного управления аппаратурой, как инфракрасный светодиод и инфракрасный фото приемник. Фотоприемник интегральный, на частоту модуляции ИК-потока 33 кГц.

Рис. 1. Принципиальная схема датчика препятствий на ИК-лучах.

Функционально схема состоит из приемника и излучателя. Приемник состоит из интегрального фотоприемника HF1 и логического элемента D1.1. Излучатель состоит из ИК-светодиода HL1 и генератора импульсов 33 кГц на элементах D1.2-D1.6. Фотоприемник и светодиод расположены на плате рядом и направлены в одну сторону, - на препятствие.

Печатная плата

Рис. 2. Печатная плата для схемы датчика.

Между ними непрозрачная перегородка. Чувствительность (дальность) регулируется подбором сопротивления R3 (на схеме минимальное сопротивление, дающее максимальную чувствительность).

Горбунов С. РК-2016-09.

Простейший инфракрасный сенсор, который будет сообщать о наличии препятствия, можно сделать всего на одном транзисторе. Эта самоделка имеет скорее не практическое применение, а скорее теоретическое, демонстрируя работу инфракрасного датчика наличия препятствия. Конечно, никто не мешает сделать и практическое применение, скажем, при построении простых роботов.

Схема инфракрасного датчика препятствия

Работа схемы очень проста. Инфракрасный светодиод излучает инфракрасное излучение, в невидимом человеческому глазу спектре. Если на пути излучения появляется объект, то инфракрасные лучи начинают отражаться от объекта и возвращаться обратно в сторону светодиода. Ловушкой для этих лучей служит инфракрасный фото элемент (ИК фотодиод). При попадании на него отраженных лучей, его сопротивление уменьшается. В результате ток в цепи базы транзистора увеличивается и транзистор открывается. Нагрузкой транзистора служит синий светодиод, который начинает светиться. Можно на выход подключить зуммер и слышать звуковой сигнал.
Если препятствия датчику нет, то лучи не отражаются и транзистор не открывается.
Транзистор можно взять любой, той же структуры, можно советский КТ315 или КТ3102.

Сборка датчика

Схема собрана навесным монтажом. Настройка не требуется – работает сразу. Питаю я от аккумуляторной батареи 3,7 В.


Инфракрасные датчики используют роботы-пылесосы, различные системы контроля, в обычном печатном принтере обязательно стоит таких парочка, а то и больше и тп.

Практически каждый самодвижущийся робот имеет такие датчики. Это своеобразные глаза робота. Датчик работает по принципу радара - посылка и прием ИК света. Светодиод излучает инфракрасные лучи, которые отражаясь от препятствия попадают на приемник ИК излучения TSOP1736 , который формирует на выходе сигнал низкого уровня, что говорит о том, что есть сигнал. Если же препятствия нет, то лучи уйду в никуда и отражения не будет, приемник ИК лучей ничего не увидит.

Вобщем идея очень проста, но есть тут несколько тонкостей. Во первых приемник ИК излучения реагирует только на импульсы определенной частоты, частота указана в последних двух цифрах обозначения TSOPа - 1736 - 36Кгц, 1738 - 38 Кгц. Т.е. для управления светодиодом (вывод вход датчика) нужно подавать импульсы именно с частотой приема TSOPа. Это можно реализовать либо программно, либо использовав модуль ШИМ управляющего микроконтроллера, а можно и аппаратно, собрав генератор на нужную частоту, скажем на таймере 555. Лично я использую для управления ИК диодами ШИМ модуль микроконтроллера. Чтобы датчик ответил на сигнал оптимально подавать пачку из 8-15 импульсов на светодиод, а потом сразу же проверять состояние ИК приемника. Если на его выводе лог.0 то есть препятствие - нужно выполнять маневр. И еще, фильтр ИК приемника может подстраиваться в небольших пределах на принимаемый ИК сигнал, это нигде не документируется, но это так. Поэтому совсем точно выдерживать 36Кгц не обязательно, достаточно установить близкую частоту (ну скажем 35750 ГЦ) и дать достаточное количество импульсов, чтобы TSOP мог подстроиться к ним и успеть среагировать, обычно делают 10-15 импульсов.

Вывод TSOPа имеет открытый коллектор, когда сигнал принят вывод устанавливается в низкий логический уровень. Если выход датчика подключен к порту контроллера со встроенным подтягивающим резистором то резистор R2 в схеме не нужен.

Тут еще нужно сказать, что дальность определения расстояния очень сильно зависит от материала. Например на черный пластик датчик вобще не реагирует, а на белые обои реагирует прекрасно. Для относительной регулировки чувствительности датчика используется подстроечный резистор R4. А чтобы датчик реагировал только на отраженный свет, а не на сам светодиод нужно между диодом и приемником установить непрозрачную для ИК лучей перегородку.

Питается устройство напряжением 5 вольт (у меня от NI-MH аккумулятора 4,8 вольт).

Пример настройки модуля ШИМ на 36 КГц для микроконтроллера PIC
movlw d"14"
movwf CCPR1L ;Установка периода 50%
movlw b"00001111"
movwf CCP1CON ;Включаем ШИМ
bsf STATUS,RP0 ;Банк 1
movlw d"27" ;Частота ШИМ примерно 36КГЦ (для TSOP1736)
movwf PR2
bcf STATUS,RP0 ;БАНК 0
clrf TMR2
movlw b"00000100" ;Включение модуля ШИМ
movwf T2CON ;и таймера TMR2, чтобы ШИМ работало