Понятие гравитации. Сила притяжения земли. Гравитационное излучение или самое фундаментальное открытие последних лет

Не смотря на то, что гравитация – это слабейшее взаимодействие между объектами во Вселенной, ее значение в физике и астрономии огромно, так как она способна оказывать влияние на физические объекты на любом расстоянии в космосе.

Если вы увлекаетесь астрономией, вы наверняка задумывались над вопросом, что собой представляет такое понятие, как гравитация или закон всемирного тяготения. Гравитация – это универсальное фундаментальное взаимодействие между всеми объектами во Вселенной.

Открытие закона гравитации приписывают знаменитому английскому физику Исааку Ньютону. Наверное, многим из вас известна история с яблоком, упавшим на голову знаменитому ученому. Тем не менее, если заглянуть вглубь истории, можно увидеть, что о наличии гравитации задумывались еще задолго до его эпохи философы и ученые древности, например, Эпикур. Тем не менее, именно Ньютон впервые описал гравитационное взаимодействие между физическими телами в рамках классической механики. Его теорию развил другой знаменитый ученый – Альберт Эйнштейн, который в своей общей теории относительности более точно описал влияние гравитации в космосе, а также ее роль в пространственно-временном континууме.

Закон всемирного тяготения Ньютона говорит, что сила гравитационного притяжения между двумя точками массы, разделенными расстоянием обратно пропорциональна квадрату расстояния и прямо пропорциональна обеим массам. Сила гравитации является дальнодействующей. То есть, в независимости от того, как будет двигаться тело, обладающее массой, в классической механике его гравитационный потенциал будет зависеть сугубо от положения этого объекта в данный момент времени. Чем больше масса объекта, тем больше его гравитационное поле – тем более мощной гравитационной силой он обладает. Такие космически объекты, как галактики, звезды и планеты обладают наибольшей силой притяжения и соответственно достаточно сильными гравитационными полями.

Гравитационные поля

Гравитационное поле Земли

Гравитационное поле – это расстояние, в пределах которого осуществляется гравитационное взаимодействие между объектами во Вселенной. Чем больше масса объекта, тем сильнее его гравитационное поле – тем ощутимее его воздействие на другие физические тела в пределах определенного пространства. Гравитационное поле объекта потенциально. Суть предыдущего утверждения заключается в том, что если ввести потенциальную энергию притяжения между двумя телами, то она не изменится после перемещения последних по замкнутому контуру. Отсюда выплывает еще один знаменитый закон сохранения суммы потенциальной и кинетической энергии в замкнутом контуре.

В материальном мире гравитационное поле имеет огромное значения. Им обладают все материальные объекты во Вселенной, у которых есть масса. Гравитационное поле способно влиять не только на материю, но и на энергию. Именно за счет влияния гравитационных полей таких крупных космических объектов, как черные дыры, квазары и сверхмассивные звезды, образуются солнечные системы, галактики и другие астрономические скопления, которым свойственна логическая структура.

Последние научные данные показывают, что знаменитый эффект расширения Вселенной так же основан на законах гравитационного взаимодействия. В частности расширению Вселенной способствуют мощные гравитационные поля, как небольших, так и самых крупных ее объектов.

Гравитационное излучение в двойной системе

Гравитационное излучение или гравитационная волна – термин, впервые введенный в физику и космологии известным ученым Альбертом Эйнштейном. Гравитационное излучение в теории гравитации порождается движением материальных объектов с переменным ускорением. Во время ускорения объекта гравитационная волна как бы «отрывается» от него, что приводит к колебаниям гравитационного поля в окружающем пространстве. Это и называют эффектом гравитационной волны.

Хотя гравитационные волны предсказаны общей теорией относительности Эйнштейна, а также другими теориями гравитации, они еще ни разу не были обнаружены напрямую. Связано это в первую очередь с их чрезвычайной малостью. Однако в астрономии существуют косвенные свидетельства, способные подтвердить данный эффект. Так, эффект гравитационной волны можно наблюдать на примере сближения двойных звезд. Наблюдения подтверждают, что темпы сближения двойных звезд в некоторой степени зависят от потери энергии этих космических объектов, которая предположительно затрачивается на гравитационное излучение. Достоверно подтвердить эту гипотезу ученые смогут в ближайшее время при помощи нового поколения телескопов Advanced LIGO и VIRGO.

В современной физике существует два понятия механики: классическая и квантовая. Квантовая механика была выведена относительно недавно и принципиально отличается от механики классической. В квантовой механике у объектов (квантов) нет определенных положений и скоростей, все здесь базируется на вероятности. То есть, объект может занимать определенное место в пространстве в определенный момент времени. Куда переместиться он дальше, достоверно определить нельзя, а только с высокой долей вероятности.

Интересный эффект гравитации заключается в том, что она способна искривлять пространственно-временной континуум. Теория Эйнштейна гласит, что в пространстве вокруг сгустка энергии или любого материального вещества пространство-время искривляется. Соответственно меняется траектория частиц, которые попадают под воздействие гравитационного поля этого вещества, что позволяет с высокой долей вероятности предсказать траекторию их движения.

Теории гравитации

Сегодня ученым известно свыше десятка различных теорий гравитации. Их подразделяют на классические и альтернативные теории. Наиболее известными представителем первых является классическая теория гравитации Исаака Ньютона, которая была придумана известным британским физиком еще в 1666 году. Суть ее заключается в том, что массивное тело в механике порождает вокруг себя гравитационное поле, которое притягивает к себе менее крупные объекты. В свою очередь последние также обладают гравитационным полем, как и любые другие материальные объекты во Вселенной.

Следующая популярная теория гравитации была придумана всемирно известным германским ученым Альбертом Эйнштейном в начале XX века. Эйнштейну удалось более точно описать гравитацию, как явление, а также объяснить ее действие не только в классической механике, но и в квантовом мире. Его общая теория относительности описывает способность такой силы, как гравитация, влиять на пространственно-временной континуум, а также на траекторию движения элементарных частиц в пространстве.

Среди альтернативных теорий гравитации наибольшего внимания, пожалуй, заслуживает релятивистская теория, которая была придумана нашим соотечественником, знаменитым физиком А.А. Логуновым. В отличие от Эйнштейна, Логунов утверждал, что гравитация – это не геометрическое, а реальное, достаточно сильное физическое силовое поле. Среди альтернативных теорий гравитации известны также скалярная, биметрическая, квазилинейная и другие.

  1. Людям, побывавшим в космосе и возвратившимся на Землю, достаточно трудно на первых порах привыкнуть к силе гравитационного воздействия нашей планеты. Иногда на это уходит несколько недель.
  2. Доказано, что человеческое тело в состоянии невесомости может терять до 1% массы костного мозга в месяц.
  3. Наименьшей силой притяжения в Солнечной системе среди планет обладает Марс, а наибольшей – Юпитер.
  4. Известные бактерии сальмонеллы, которые являются причиной кишечных заболеваний, в состоянии невесомости ведут себя активнее и способны причинить человеческому организму намного больший вред.
  5. Среди всех известных астрономических объектов во Вселенной наибольшей силой гравитации обладают черные дыры. Черная дыра размером с мячик для гольфа, может обладать той же гравитационной силой, что и вся наша планета.
  6. Сила гравитации на Земле одинакова не во всех уголках нашей планеты. К примеру, в области Гудзонова залива в Канаде она ниже, чем в других регионах земного шара.

Даже человек, не интересующийся космосом, хоть раз видел фильм о космических путешествиях или читал о таких вещах в книгах. Практически во всех подобных произведениях люди ходят по кораблю, нормально спят, не испытывают проблем с приемом пищи. Это означает, что на этих - выдуманных - кораблях имеется искусственная гравитация. Большинство зрителей воспринимает это как нечто совершенно естественное, а ведь это совсем не так.

Искусственная гравитация

Так называют изменение (в любую сторону) привычной для нас гравитации путем применения различных способов. И делается это не только в фантастических произведениях, но и во вполне реальных земных ситуациях, чаще всего, для экспериментов.

В теории создание искусственной гравитации выглядит не так сложно. К примеру, воссоздать ее можно при помощи инерции, точнее, Потребность в этой силе возникла не вчера - произошло это сразу, как только человек начал мечтать о длительных космических перелетах. Создание искусственной гравитации в космосе даст возможность избежать множества проблем, возникающих при продолжительном нахождении в невесомости. У космонавтов слабеют мускулы, кости становятся менее прочными. Путешествуя в таких условиях месяцы, можно получить атрофию некоторых мышц.

Таким образом, на сегодняшний день создание искусственной гравитации - задача первостепенной важности, без этого умения просто невозможно.

Матчасть

Даже те, кто знают физику лишь на уровне школьной программы, понимают, что гравитация - один из фундаментальных законов нашего мира: все тела взаимодействуют друг с другом, испытывая взаимное притяжение/отталкивание. Чем больше тело, тем выше его сила притяжения.

Земля для нашей реальности - объект очень массивный. Именно поэтому все без исключения тела вокруг к ней притягиваются.

Для нас это означает которое принято измерять в g, равное 9.8 метра за квадратную секунду. Это значит, что если бы под ногами у нас не было опоры, мы бы падали со скоростью, ежесекундно увеличивающейся на 9.8 метра.

Таким образом, только благодаря гравитации мы способны стоять, падать, нормально есть и пить, понимать, где находится верх, где низ. Если притяжение исчезнет - мы окажемся в невесомости.

Особенно хорошо знакомы с этим феноменом космонавты, оказывающиеся в космосе в состоянии парения - свободного падения.

Теоретически ученые знают, как создать искусственную гравитацию. Существует несколько методик.

Большая масса

Самый логичный вариант - сделать настолько большим, чтобы на нем возникала искусственная гравитация. На корабле можно будет чувствовать себя комфортно, поскольку не будет потеряна ориентация в пространстве.

К сожалению, этот способ при современном развитии технологий нереален. Чтобы соорудить такой объект, требуется слишком много ресурсов. Кроме того, для его подъема потребуется невероятное количество энергии.

Ускорение

Казалось бы, если требуется достичь g, равного земному, нужно всего лишь придать кораблю плоскую (платформообразную) форму, и заставить его двигаться по перпендикуляру к плоскости с нужным ускорением. Таким путем будет получена искусственная гравитация, причем - идеальная.

Однако в реальности все гораздо сложнее.

В первую очередь стоит учесть топливный вопрос. Для того чтобы станция постоянно ускорялась, необходимо иметь бесперебойный источник питания. Даже если внезапно появится двигатель, не выбрасывающий материю, закон сохранения энергии останется в силе.

Вторая проблема заключается в самой идее постоянного ускорения. Согласно нашим знаниям и физическим законам, невозможно ускоряться до бесконечности.

Кроме того, такой транспорт не подходит для исследовательских миссий, поскольку он должен постоянно ускоряться - лететь. Он не сможет остановиться для изучения планеты, он даже медленно пролететь вокруг нее не сможет - надо ускоряться.

Таким образом, становится ясно, что и такая искусственная гравитация нам пока недоступна.

Карусель

Каждый знает, как вращение карусели воздействует на тело. Поэтому устройство искусственной гравитации по этому принципу кажется наиболее реальным.

Все, что находится в диаметре карусели, стремится выпасть из нее со скоростью, примерно равной скорости вращения. Выходит, что на тела действует сила, направленная вдоль радиуса вращающегося объекта. Это очень похоже на гравитацию.

Итак, требуется корабль, имеющий цилиндрическую форму. При этом он должен вращаться вокруг своей оси. Между прочим, искусственная гравитация на космическом корабле, созданная по этому принципу, достаточно часто демонстрируется в научно-фантастических фильмах.

Бочкообразный корабль, вращаясь вокруг продольной оси, создает центробежную силу, направление которой соответствует радиусу объекта. Чтобы вычислить получаемое ускорение, требуется разделить силу на массу.

В этой формуле результат расчетов - ускорение, первая переменная - узловая скорость (измеряется в количестве радиан в секунду), вторая - радиус.

Согласно этому, для получения привычной нам g, необходимо грамотно сочетать и радиус космического транспорта.

Подобная проблема освещена в таких фильмах, как «Интерсолах», «Вавилон 5», «2001 год: Космическая одиссея» и подобных им. Во всех этих случаях искусственная гравитация приближена к земному ускорению свободного падения.

Как бы ни была хороша идея, реализовать ее достаточно сложно.

Проблемы метода «карусель»

Самая очевидная проблема освещена в «Космической одиссее». Радиус «космического перевозчика» составляет порядка 8 метров. Для того чтобы получить ускорение в 9.8, вращение должно происходить со скоростью, примерно, 10.5 оборота ежеминутно.

При указанных величинах проявляется «эффект Кориолиса», который заключается в том, что на различном удалении от пола действует разная сила. Она напрямую зависит от угловой скорости.

Выходит, искусственная гравитация в космосе создана будет, однако слишком быстрое вращение корпуса приведет к проблемам с внутренним ухом. Это, в свою очередь, вызывает нарушения равновесия, проблемы с вестибулярным аппаратом и прочие - аналогичные - трудности.

Возникновение этой преграды говорит о том, что подобная модель крайне неудачная.

Можно попробовать пойти от обратного, как поступили в романе «Мир-Кольцо». Тут корабль выполнен в форме кольца, радиус которого приближен к радиусу нашей орбиты (порядка 150 млн км). При таком размере скорости его вращения вполне достаточно, чтобы игнорировать эффект Кориолиса.

Можно предположить, что проблема решена, однако это совсем не так. Дело в том, что полный оборот этой конструкции вокруг своей оси занимает 9 дней. Это дает возможность предположить, что нагрузки окажутся слишком велики. Для того чтобы конструкция их выдержала, необходим очень крепкий материал, которым на сегодняшний день мы не располагаем. Кроме того, проблемой является количество материала и непосредственно процесс постройки.

В играх подобной тематики, как и в фильме «Вавилон 5», эти проблемы каким-то образом решены: вполне достаточна скорость вращения, эффект Кориолиса не существенен, гипотетически создать такой корабль возможно.

Однако даже такие миры имеют недостаток. Зовут его - момент импульса.

Корабль, вращаясь вокруг оси, превращается в огромный гироскоп. Как известно, заставить гироскоп отклониться от оси крайне сложно благодаря Важно, чтобы его количество не покидало систему. Это означает, что задать направление этому объекту будет очень сложно. Однако такую проблему решить можно.

Решение проблемы

Искусственная гравитация на космической станции становится доступной, когда на помощь приходит «цилиндр О’Нила». Для создания этой конструкции необходимы одинаковые цилиндрические корабли, которые соединяют вдоль оси. Вращаться они должны в разные стороны. Результатом такой сборки является нулевой момент импульса, поэтому не должно возникнуть трудностей с приданием кораблю необходимого направления.

Если возможно сделать корабль радиусом порядка 500 метров, то он будет работать именно так, как и должен. При этом искусственная гравитация в космосе будет вполне комфортной и пригодной для длительных перелетов на кораблях или исследовательских станциях.

Space Engineers

Как создать искусственную гравитацию, известно создателям игры. Впрочем, в этом фантастическом мире гравитация - это не взаимное притяжение тел, но линейная сила, призванная ускорить предметы в заданном направлении. Притяжение тут не абсолютно, оно изменяется при перенаправлении источника.

Искусственная гравитация на космической станции создается путем использования специального генератора. Она равномерна и равнонаправленна в зоне действия генератора. Так, в реальном мире, попав под корабль, в котором установлен генератор, вы бы были притянуты к корпусу. Однако в игре герой будет падать до тех пор, пока не покинет периметр действия устройства.

На сегодняшний день искусственная гравитация в космосе, созданная таким устройством, для человечества недоступна. Однако даже убеленные сединами разработчики не перестают мечтать о ней.

Сферический генератор

Это более реалистичный вариант оборудования. При его установке гравитация имеет направление к генератору. Это дает возможность создать станцию, гравитация которой будет равна планетарной.

Центрифуга

Сегодня искусственная гравитация на Земле встречается в различных устройствах. Основаны они, большей частью, на инерции, поскольку эта сила ощущается нами аналогично гравитационному воздействию - организм не различает, какая причина вызывает ускорение. Как пример: человек, поднимающийся в лифте, испытывает на себе воздействие инерции. Глазами физика: подъем лифта добавляет к ускорению свободного падения ускорение кабины. При возвращении кабины к размеренному движению «прибавка» в весе исчезает, возвращая привычные ощущения.

Ученых давно интересует искусственная гравитация. Центрифуга используется для этих целей чаще всего. Этот метод подходит не только для космических кораблей, но и для наземных станций, в которых требуется изучать воздействие гравитации на человеческий организм.

Изучить на Земле, применять в…

Хотя изучение гравитации началось из космоса, это очень земная наука. Даже на сегодняшний день достижения в этой сфере нашли свое применение, например, в медицине. Зная, возможно ли создать искусственную гравитацию на планете, можно использовать ее для лечения проблем с двигательным аппаратом или нервной системы. Более того, изучением этой силы занимаются прежде всего на Земле. Это дает возможность космонавтам проводить эксперименты, оставаясь под пристальным вниманием врачей. Другое дело искусственная гравитация в космосе, там нет людей, способных помочь космонавтам при возникновении непредвиденной ситуации.

Имея в виду полную невесомость, нельзя брать в расчет спутник, находящийся на околоземной орбите. На эти объекты, пусть и в малой степени, воздействует земное притяжение. Силу тяжести, образующуюся в таких случаях, называют микрогравитацией. Реальную гравитацию испытывают только в аппарате, летящем с постоянной скоростью в открытом космосе. Впрочем, человеческий организм эту разницу не ощущает.

Испытать на себе невесомость можно при затяжном прыжке (до того, как купол раскроется) или во время параболического снижения самолета. Такие эксперименты часто ставят в США, но в самолете это ощущение длится только 40 секунд - это слишком мало для полноценного изучения.

В СССР еще в 1973 году знали, можно ли создать искусственную гравитацию. И не просто создавали ее, но и в некотором роде изменяли. Яркий пример искусственного уменьшения силы тяжести - сухое погружение, иммерсия. Для достижения необходимого эффекта требуется положить плотную пленку на поверхность воды. Человек размещается поверх нее. Под тяжестью тела организм погружается под воду, наверху остается лишь голова. Эта модель демонстрирует безопорность с пониженной гравитацией, которая характерна для океана.

Нет необходимости отправляться в космос, чтобы ощутить на себе воздействие противоположной невесомости силы - гипергравитации. При взлете и посадке космического корабля, в центрифуге перегрузку можно не только ощутить, но и изучить.

Лечение гравитацией

Гравитационная физика изучает в том числе и воздействие невесомости на организм человека, стремясь минимизировать последствия. Однако большое количество достижений этой науки способно пригодиться и обычным жителям планеты.

Большие надежды медики возлагают на исследования поведения мышечных ферментов при миопатии. Это тяжелое заболевание, ведущее к ранней смерти.

При активных физических занятиях в кровь здорового человека поступает большой объем фермента креатинофосфокиназы. Причина этого явления неясна, возможно, нагрузка воздействует на мембрану клеток таким образом, что она «дырявится». Больные миопатией получают тот же эффект без нагрузок. Наблюдения за космонавтами показывают, что в невесомости поступление активного фермента в кровь значительно снижается. Такое открытие позволяет предположить, что применение иммерсии позволит снизить негативное воздействие приводящих к миопатии факторов. В данный момент проводятся опыты на животных.

Лечение некоторых болезней уже сегодня проводится с использованием данных, полученных при изучении гравитации, в том числе искусственной. К примеру, проводится лечение ДЦП, инсультов, Паркинсона путем применения нагрузочных костюмов. Практически закончены исследования положительного воздействия опоры - пневматического башмака.

Полетим ли на Марс?

Последние достижения космонавтов дают надежду на реальность проекта. Имеется опыт медицинской поддержки человека при длительном нахождении вдали от Земли. Много пользы принесли и исследовательские полеты к Луне, сила гравитации на которой в 6 раз меньше нашей родной. Теперь космонавты и ученые ставят перед собой новую цель - Марс.

Прежде чем вставать в очередь за билетом на Красную планету, следует знать, что ожидает организм уже на первом этапе работы - в пути. В среднем дорога к пустынной планете займет полтора года - около 500 суток. Рассчитывать в пути придется только на свои собственные силы, помощи ждать просто неоткуда.

Подтачивать силы будут множество факторов: стресс, радиация, отсутствие магнитного поля. Самое главное же испытание для организма - изменение гравитации. В путешествии человек «ознакомится» с несколькими уровнями гравитации. В первую очередь это перегрузки при взлете. Затем - невесомость во время полета. После этого - гипогравитация в месте назначения, т. к. сила тяжести на Марсе менее 40% земной.

Как справляются с отрицательным воздействием невесомости в длительном перелете? Есть надежда, что разработки в области создания искусственной гравитации помогут решить этот вопрос в недалеком будущем. Опыты на крысах, путешествующих на «Космос-936» показывают, что этот прием не решает всех проблем.

Опыт ОС показал, что гораздо больше пользы для организма способно принести применение тренажерных комплексов, способных определить необходимую нагрузку для каждого космонавта индивидуально.

Пока считается, что на Марс полетят не только исследователи, но и туристы, желающие основать колонию на Красной планете. Для них, во всяком случае первое время, ощущения от нахождения в невесомости перевесят все доводы медиков о вреде длительного нахождения в таких условиях. Однако через несколько недель помощь потребуется и им, поэтому так важно суметь найти способ создать на космическом корабле искусственную гравитацию.

Итоги

Какие выводы можно сделать о создании искусственной гравитации в космосе?

Среди всех рассматриваемых в данный момент вариантов наиболее реалистично выглядит вращающаяся конструкция. Однако при нынешнем понимании физических законов это невозможно, поскольку корабль - это не полый цилиндр. Внутри него имеются перекрытия, мешающие воплощению идей.

Кроме того, радиус корабля должен быть настолько большим, чтобы эффект Кориолиса не оказывал существенного влияния.

Чтобы управлять чем-то подобным, требуется упомянутый выше цилиндр О’Нила, который даст возможность управлять кораблем. В этом случае повышаются шансы применения подобной конструкции для межпланетных перелетов с обеспечением команды комфортным уровнем гравитации.

До того как человечеству удастся претворить свои мечты в жизнь, хотелось бы видеть в фантастических произведениях чуточку большей реалистичности и еще большего знания законов физики.

Гравитационная сила – это сила, с которой притягиваются друг к другу тела определённой массы, находящиеся на определённом расстоянии друг от друга.

Английский учёный Исаак Ньютон в 1867 г. открыл закон всемирного тяготения. Это один из фундаментальных законов механики. Суть этого закона в следующем: любые две материальные частицы притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними.

Сила притяжения – первая сила, которую почувствовал человек. Это сила, с которой Земля воздействует на все тела, находящиеся на её поверхности. И эту силу любой человек ощущает как собственный вес.

Закон всемирного тяготения


Существует легенда, что закон всемирного тяготения Ньютон открыл совершенно случайно, гуляя вечером по саду своих родителей. Творческие люди постоянно находятся в поиске, а научные открытия - это не мгновенное озарение, а плод длительной умственной работы. Сидя под яблоней, Ньютон осмысливал очередную идею, и вдруг на голову ему упало яблоко. Ньютону было понятно, что яблоко упало в результате действия силы притяжения Земли. «Но почему не падает на Землю Луна? - задумался он. - Значит, на неё действует ещё какая-то сила, удерживающая её на орбите». Так был открыт знаменитый закон всемирного тяготения .

Учёные, изучавшие до этого вращение небесных тел, считали, что небесные тела подчиняются каким-то совершенно другим законам. То есть, предполагалось, что существуют совершенно разные законы притяжения на поверхности Земли и в космосе.

Ньютон объединил эти предполагаемые виды гравитации. Анализируя законы Кеплера, описывающие движение планет, он пришёл к выводу, что сила притяжения возникает между любыми телами. То есть, и на яблоко, упавшее в саду, и на планеты в космосе действуют силы, подчиняющиеся одному закону – закону всемирного тяготения.

Ньютон установил, что законы Кеплера действуют только в том случае, если между планетами существует сила притяжения. И эта сила прямо пропорциональна массам планет и обратно пропорциональная квадрату расстояния между ними.

Сила притяжения рассчитывается по формуле F=G m 1 m 2 / r 2

m 1 – масса первого тела;

m 2 – масса второго тела;

r – расстояние между телами;

G – коэффициент пропорциональности, который называют гравитационной постоянной или постоянной всемирного тяготения .

Его значение определили экспериментально. G = 6,67·10 -11 Нм 2 /кг 2

Если две материальные точки с массой, равной единице массы, находятся на расстоянии, равном единице расстояния, то они притягиваются с силой, равной G .

Силы притяжения и есть гравитационные силы. Их называют ещё силами тяготения . Они подчинены закону всемирного тяготения и проявляются всюду, так как все тела имеют массу.

Сила тяжести


Гравитационная сила вблизи поверхности Земли – это сила, с которой все тела притягиваются к Земле. Её называют силой тяжести . Она считается постоянной, если расстояние тела от поверхности Земли мало по сравнению с радиусом Земли.

Так как сила тяжести, являющаяся гравитационной силой, зависит от массы и радиуса планеты, то на разных планетах она будет разной. Так как радиус Луны меньше радиуса Земли, то и сила притяжения на Луне меньше, чем на Земле в 6 раз. А на Юпитере, наоборот, сила тяжести в 2,4 раза больше силы тяжести на Земле. Но масса тела остаётся постоянной, независимо от того, где её измеряют.

Многие путают значение веса и силы тяжести, считая, что сила тяжести всегда равна весу. Но это не так.

Сила, с которой тело давит на опору или растягивает подвес, это и есть вес. Если убрать опору или подвес, тело начнёт падать с ускорением свободного падения под действием силы тяжести. Сила тяжести пропорциональна массе тела. Она вычисляется по формуле F = mg , где m – масса тела, g – ускорение свободного падения.

Вес тела может изменяться, а иногда и вообще исчезать. Представим себе, что мы находимся в лифте на верхнем этаже. Лифт стоит. В этот момент наш вес Р и сила тяжести F, с которой Земля притягивает нас, равны. Но как только лифт начал двигаться вниз с ускорением а , вес и сила тяжести уже не равны. Согласно второму закону Ньютона mg + P = ma . Р =m g - ma .

Из формулы видно, что наш вес при движении вниз уменьшился.

В момент, когда лифт набрал скорость и стал двигаться без ускорения, наш вес снова равен силе тяжести. А когда лифт стал замедлять своё движение, ускорение а стало отрицательным, и вес увеличился. Наступает перегрузка.

А если тело двигается вниз с ускорением свободного падения, то вес и вовсе станет равным нулю.

При a =g Р =mg-ma= mg - mg=0

Это состояние невесомости.

Итак, все без исключения материальные тела во Вселенной подчиняются закону всемирного тяготения. И планеты вокруг Солнца, и все тела, находящиеся у поверхности Земли.

Гравитация - самая таинственная сила во Вселенной. Ученые не знают до конца ее природы. Именно она удерживает на орбитах планеты Солнечной системы. Это сила, возникающая между двумя объектами и зависящая от массы и расстояния.

Гравитацию называют силой притяжения или тяготения. С помощью нее планета или другое тело тянет объекты к своему центру. Сила тяжести удерживает планеты на орбите вокруг Солнца.

Что еще делает гравитация?

Почему вы приземляетесь на землю, когда вскакиваете, а не уплываете в космос? Почему предметы падают, когда вы их бросаете? Ответ — невидимая сила тяжести, которая тянет объекты друг к другу. Земная гравитация — это то, что держит вас на земле и заставляет вещи падать.

Все, что имеет массу, имеет гравитацию. Мощь гравитации зависит от двух факторов: массы предметов и расстояния между ними. Если взять в руки камень и перо, с одинаковой высоты отпустить их, оба предмета упадут на землю. Тяжелый камень упадет быстрее пера. Перо еще повисит в воздухе, потому что оно легче. Объекты с большей массой имеют большую силу притяжения, которая становится слабее с расстоянием: чем ближе объекты друг к другу, тем сильнее их гравитационное тяготение.

Гравитация на Земле и во Вселенной

Во время полета самолета люди в нем остаются на местах и могут передвигаться как на земле. Так происходит из-за траектории полета. Существует специально разработанные самолеты, в которых на определенной высоте отсутствует гравитация, образуется невесомость. Самолет выполняет специальный маневр, масса предметов меняется, они ненадолго поднимаются в воздух. Через несколько секунд гравитационное поле восстанавливается.

Рассматривая силу гравитации в Космосе, у земного шара она больше большинства планет. Достаточно посмотреть движение космонавтов при высадке на планеты. Если по земле мы ходим спокойно, то там космонавты как бы парят в воздухе, но не улетают в космос. Это значит, что у данной планеты тоже есть сила тяготения, просто несколько иная, чем у планеты Земля.

Сила притяжения Солнца настолько велика, что удерживает девять планет, многочисленные спутники, астероиды и планеты.

Гравитация играет важнейшую роль в развитии Вселенной. При отсутствии силы тяготения, не было бы звезд, планет, астероидов, черных дыр, галактик. Интересно, что черных дыр на самом деле не видно. Ученые определяют признаки черной дыры по степени мощности гравитационного поля в определенной области. Если оно очень сильное с сильнейшим колебанием, это говорит о существовании черной дыры.

Миф 1. В космосе отсутствует гравитация

Просматривая документальные фильмы о космонавтах, кажется, что они парят над поверхностью планет. Так происходит из-за того, что на других планетах гравитация ниже, чем на Земле, поэтому космонавты идут как бы паря в воздухе.

Миф 2. Все приближающиеся к черной дыре тела разрываются

Черные дыры обладают мощной силой и образуют мощные гравитационные поля. Чем ближе объект к черной дыре, тем сильнее становятся приливные силы и мощность притяжения. Дальнейшее развитие событий зависит от массы объекта, размера черной дыры и расстояния между ними. Черная дыра имеет массу прямо противоположную ее размеру. Интересно, что чем больше размер дыры, тем слабее приливные силы и наоборот. Таким образом, не все объекты разрываются при попадании в поле черной дыры.

Миф 3. Искусственные спутники могут обращаться вокруг Земли вечно

Теоретически можно так сказать, если бы не влияние второстепенных факторов. Многое зависит от орбиты. На низкой орбите спутник вечно летать не сможет из-за атмосферного торможения, на высоких орбитах он может находиться в неизменном состоянии довольно долго, но здесь вступают в силу гравитационные силы других объектов.

Если бы из всех планет существовала только Земля, спутник притягивался бы к ней и практически не менял траекторию движения. Но на высоких орбитах объект окружает множество планет, больших и малых, каждая со своей силой тяготения.

В этом случае спутник бы постепенно отходил от своей орбиты и двигался хаотично. И, вполне вероятно, что по прошествии какого-то времени, он рухнул бы на ближайшую поверхность или перешел на другую орбиту.

Некоторые факты

  1. В некоторых уголках Земли сила гравитации имеет более слабую силу, чем на всей планете. Например, в Канаде, в районе Гудзонова залива сила притяжения ниже.
  2. Когда космонавты возвращаются из космоса на нашу планету, в самом начале им сложно приспособиться к гравитационной силе земного шара. Иногда это занимает несколько месяцев.
  3. Самой мощной силой гравитации среди космических объектов обладают черные дыры. Одна черная дыра размером с мячик имеет силу больше, чем любая планета.

Несмотря на непрекращающееся изучение силы притяжения, гравитация остается нераскрытой. Это означает, что научные знания остаются ограниченными и человечеству предстоит познать много нового.

На вопрос «Что такое сила?» физика отвечает так: «Сила есть мера взаимодействия вещественных тел между собой или между телами и другими материальными объектами - физическими полями». Все силы в природе могут быть отнесены к четырем фундаментальным видам взаимодействий: сильному, слабому, электромагнитному и гравитационному. Наша статья рассказывает о том, что представляют собой гравитационные силы - мера последнего и, пожалуй, наиболее широко распространенного в природе вида этих взаимодействий.

Начнем с притяжения земли

Всем живущим известно, что существует сила, которая притягивает объекты к земле. Она обычно именуется гравитацией, силой тяжести или земным притяжением. Благодаря ее наличию у человека возникли понятия «верх» и «низ», определяющие направление движения или расположения чего-либо относительно земной поверхности. Так в частном случае, на поверхности земли или вблизи нее, проявляют себя гравитационные силы, которые притягивают объекты, обладающие массой, друг к другу, проявляя свое действие на любых как самых малых, так и очень больших, даже по космическим меркам, расстояниях.

Сила тяжести и третий закон Ньютона

Как известно, любая сила, если она рассматривается как мера взаимодействия физических тел, всегда приложена к какому-нибудь из них. Так и в гравитационном взаимодействии тел друг с другом, каждое из них испытывает такие виды гравитационных сил, которые вызваны влиянием каждого из них. Если тел всего два (предполагается, что действием всех других можно пренебречь), то каждое из них по третьему закону Ньютона будет притягивать другое тело с одинаковой силой. Так Луна и Земля притягивают друг друга, следствием чего являются приливы и отливы земных морей.

Каждая планета в Солнечной системе испытывает сразу несколько сил притяжения со стороны Солнца и других планет. Конечно, определяет форму и размеры ее орбиты именно сила притяжения Солнца, но и влияние остальных небесных тел астрономы учитывают в своих расчетах траекторий их движения.

Что быстрее упадет на землю с высоты?

Главной особенностью этой силы является то, что все объекты падают на землю с одной скоростью, независимо от их массы. Когда-то, вплоть до 16-го ст., считалось, что все наоборот - более тяжелые тела должны падать быстрее, чем легкие. Чтобы развеять это заблуждение Галилео Галилею пришлось выполнить свой знаменитый опыт по одновременному сбрасыванию двух пушечных ядер разного веса с наклонной Пизанской башни. Вопреки ожиданиям свидетелей эксперимента оба ядра достигли поверхности одновременно. Сегодня каждый школьник знает, что это произошло благодаря тому, что сила тяжести сообщает любому телу одно и то же ускорение свободного падения g = 9,81 м/с 2 независимо от массы m этого тела, а величина ее по второму закону Ньютона равна F = mg.

Гравитационные силы на Луне и на других планетах имеют разные значения этого ускорения. Однако характер действия силы тяжести на них такой же.

Сила тяжести и вес тела

Если первая сила приложена непосредственно к самому телу, то вторая к его опоре или подвесу. В этой ситуации на тела со стороны опор и подвесов всегда действуют силы упругости. Гравитационные силы, приложенные к тем же телам, действуют им навстречу.

Представьте себе груз, подвешенный над землей на пружине. К нему приложены две силы: сила упругости растянутой пружины и сила тяжести. Согласно третьему закону Ньютона груз действует на пружину с силой, равной и противоположной силе упругости. Эта сила и будет его весом. У груза массой 1 кг вес равен Р = 1 кг ∙ 9,81 м/с 2 = 9,81 Н (ньютон).

Гравитационные силы: определение

Первая количественная теория гравитации, основанная на наблюдениях движения планет, была сформулирована Исааком Ньютоном в 1687 году в его знаменитых "Началах натуральной философии". Он писал, что силы притяжения, которые действуют на Солнце и планеты, зависят от количества вещества, которое они содержат. Онираспространяются на большие расстояния и всегда уменьшаются как величины, обратные квадрату расстояния. Как же можно вычислить эти гравитационные силы? Формула для силы F между двумя объектами с массами m 1 и m 2 , находящимися на расстоянии r, такова:

  • F=Gm 1 m 2 /r 2 ,
    где G — константа пропорциональности, гравитационная постоянная.

Физический механизм гравитации

Ньютон был не полностью удовлетворен своей теорией, поскольку она предполагала взаимодействие между притягивающимися телами на расстоянии. Сам великий англичанин был уверен, что должен существовать некий физический агент, ответственный за передачу действия одного тела на другое, о чем он вполне ясно высказался в одном из своих писем. Но время, когда было введено понятие гравитационного поля, которое пронизывает все пространство, наступило лишь через четыре столетия. Сегодня, говоря о гравитации, мы можем говорить о взаимодействии любого (космического) тела с гравитационным полем других тел, мерой которого и служат возникающие между каждой парой тел гравитационные силы. Закон всемирного тяготения, сформулированный Ньютоном в вышеприведенной форме, остается верным и подтверждается множеством фактов.

Теория гравитации и астрономия

Она была очень успешно применена к решению задач небесной механики во время XVIII и начале XIX века. К примеру, математики Д. Адамс и У. Леверье, анализируя нарушения орбиты Урана, предположили, что на него действуют гравитационные силы взаимодействия с еще неизвестной планетой. Ими было указано ее предполагаемое положение, и вскоре астрономом И. Галле там был обнаружен Нептун.

Хотя оставалась одна проблема. Леверье в 1845 году рассчитал, что орбита Меркурия прецессирует на 35"" за столетие, в отличие от нулевого значения этой прецессии, получаемого по теории Ньютона. Последующие измерения дали более точное значение 43"". (Наблюдаемая прецессия равна действительно 570""/век, но кропотливый расчет, позволяющий вычесть влияние от всех других планет, дает значение 43"".)

Только в 1915 г. Альберт Эйнштейн смог объяснить это несоответствие в рамках созданной им теории гравитации. Оказалось, что массивное Солнце, как и любое другое массивное тело, искривляет пространство-время в своей окрестности. Эти эффекты вызывают отклонения в орбитах планет, но у Меркурия, как самой малой и ближайшей к нашей звезде планете, они проявляются сильнее всего.

Инерционная и гравитационная массы

Как уже отмечалось выше, Галилей был первым, кто наблюдал, что объекты падают на землю с одинаковой скоростью, независимо от их массы. В формулах Ньютона понятие массы происходит от двух разных уравнений. Второй его закон говорит, что сила F, приложенная к телу с массой m, дает ускорение по уравнению F = ma.

Однако сила тяжести F, приложенная к телу, удовлетворяет формуле F = mg, где g зависит от другого тела, взаимодействующего с рассматриваемым (земли обычно, когда мы говорим о силе тяжести). В обоих уравнений m есть коэффициент пропорциональности, но в первом случае это инерционная масса, а во втором - гравитационная, и нет никакой очевидной причины, что они должны быть одинаковыми для любого физического объекта.

Однако все эксперименты показывают, что это действительно так.

Теория гравитации Эйнштейна

Он взял факт равенства инерционной и гравитационной масс как отправную точку для своей теории. Ему удалось построить уравнения гравитационного поля, знаменитые уравнения Эйнштейна, и с их помощью вычислить правильное значение для прецессии орбиты Меркурия. Они также дают измеренное значение отклонения световых лучей, которые проходят вблизи Солнца, и нет никаких сомнений в том, что из них следуют правильные результаты для макроскопической гравитации. Теория гравитации Эйнштейна, или общая теория относительности (ОТО), как он сам ее назвал, является одним из величайших триумфов современной науки.

Гравитационные силы - это ускорение?

Если вы не можете отличить инерционную массу от гравитационной, то вы не можете отличить и гравитацию от ускорения. Эксперимент в гравитационном поле вместо этого может быть выполнен в ускоренно движущемся лифте в отсутствии гравитации. Когда космонавт в ракете ускоряется, удаляясь от земли, он испытывает силу тяжести, которая в несколько раз больше земной, причем подавляющая ее часть приходит от ускорения.

Если никто не может отличить гравитацию от ускорения, то первую всегда можно воспроизвести путем ускорения. Система, в которой ускорение заменяет силу тяжести, называется инерциальной. Поэтому Луну на околоземной орбите также можно рассматривать как инерциальную систему. Однако эта система будет отличаться от точки к точке, поскольку изменяется гравитационное поле. (В примере с Луной гравитационное поле изменяет направление из одной точки в другую.) Принцип, согласно которому всегда можно найти инерциальную систему в любой точке пространства и времени, в которой физика подчиняется законам в отсутствии гравитации, называется принципом эквивалентности.

Гравитация как проявление геометрических свойств пространства-времени

Тот факт, что гравитационные силы можно рассматривать как ускорения в инерциальных системах координат, которые отличаются от точки к точке, означает, что гравитация - это геометрическое понятие.

Мы говорим, что пространство-время искривляется. Рассмотрим мяч на плоской поверхности. Он будет покоиться или, если нет никакого трения, равномерно двигаться при отсутствии действия каких-либо сил на него. Если поверхность искривляется, мяч ускорится и будет двигаться до самой низкой точки, выбирая кратчайший путь. Аналогичным образом теория Эйнштейна утверждает, что четырехмерное пространство-время искривлено, и тело движется в этом искривленном пространстве по геодезической линии, которой соответствует кратчайший путь. Поэтому гравитационное поле и действующие в нем на физические тела гравитационные силы - это геометрические величины, зависящие от свойств пространства-времени, которые наиболее сильно изменяются вблизи массивных тел.