Взаимодействие тел. Сила — мера взаимодействия. Энергия. Взаимодействие тел: мера и виды взаимодействия

Как утверждает классическая физика, в известном нам мире постоянно происходит взаимодействие тел, частиц между собой. Даже если мы наблюдаем объекты, находящиеся в покое, это не означает, что ничего не происходит. Именно благодаря удерживающим силам между молекулами, атомами и элементарными частицами вы можете видеть предмет в виде доступной нам и понятной материи физического мира.

Взаимодействие тел в природе и жизни

Как мы знаем из собственного опыта, когда падаешь на что-то, бьёшься, с чем-то сталкиваешься, это оказывается неприятно и больно. Толкаете машину или в вас врезается зазевавшийся прохожий. Тем или иным образом вы вступаете во взаимодействие с окружающим миром. В физике данное явление получило определение "взаимодействие тел". Рассмотрим подробно, на какие виды подразделяет их современная классическая наука.

Виды взаимодействия тел

В природе существует четыре вида взаимодействия тел. Первое, всем известное, это гравитационное взаимодействие тел. Масса тел является определяющей в том, насколько сильна гравитация.

Она должна быть достаточно огромных масштабов, для того чтобы мы её смогли заметить. В противном случае наблюдение и регистрация данного вида взаимодействия достаточно затруднительны. Космос является тем местом, где силы гравитации вполне возможно наблюдать на примере космических тел с огромной массой.

Взаимозависимость между гравитацией и массой тела

Непосредственно энергия взаимодействия тел прямо пропорциональна массе и обратно пропорционально квадрату расстояния между ними. Это согласно определению современной науки.

Притяжение вас и всех предметов на нашей планете обусловлено тем, что существует сила взаимодействия двух тел, обладающих массой. Поэтому подкинутый вверх предмет притягивается назад к поверхности Земли. Планета достаточно массивна, поэтому сила действия ощутима. Гравитация вызывает взаимодействие тел. Масса тел даёт возможность её проявления и регистрации.

Природа гравитации не ясна

Природа этого явления на сегодня вызывает множество споров и предположений, кроме фактического наблюдения и видимой взаимосвязи между массой и притяжением, не выявлена сила, вызывающая гравитацию. Хотя на сегодня проходит ряд экспериментов, связанных с обнаружением гравитационных волн в космическом пространстве. Более точное предположение в своё время высказал Альберт Эйнштейн.

Он сформулировал гипотезу, что гравитационная сила является порождением искривления ткани пространства-времени расположенными в нем телами.

Впоследствии, при вытеснении пространства материей, оно стремится восстановить свой объем. Эйнштейн предположил, что существует обратно пропорциональная зависимость между силой и плотностью материи.

Примером наглядной демонстрации этой зависимости могут служить чёрные дыры, имеющие немыслимую плотность материи и гравитацию, способную притянуть не только космические тела, но и свет.

Именно благодаря влиянию природы гравитации сила взаимодействия тел обеспечивает существование планет, звёзд и прочих космических объектов. Кроме этого, вращение одних объектов вокруг других присутствует по этой же причине.

Электромагнитные силы и прогресс

Электромагнитное взаимодействие тел несколько напоминает гравитационное, но намного сильнее. Взаимодействие положительно и отрицательно заряженных частиц является причиной его существования. Собственно, это и вызывает возникновение электромагнитного поля.

Оно генерируется телом (телами) либо поглощается или вызывает взаимодействие заряженных тел. Этот процесс играет очень важную роль в биологической деятельности живой клетки и перераспределении веществ в ней.

Помимо этого, наглядным примером электромагнитного проявления сил является обычный электрический ток, магнитное поле планеты. Человечество достаточно обширно применяет эту силу для передачи данных. Это мобильная связь, телевидение, GPRS и многое другое.

В механике это проявляется в виде упругости, трения. Наглядный эксперимент, демонстрирующий наличие данной силы, всем известен из школьного курса физики. Это натирание шёлковой тканью эбонитовой полочки. Возникшие на поверхности частицы с отрицательным зарядом обеспечивают притяжение лёгких предметов. Повседневный пример - это расчёска и волосы. После нескольких движений пластмассой по волосам возникает притяжение между ними.

Стоит упомянуть о компасе и магнитном поле Земли. Стрелка намагничена и имеет концы с положительно и отрицательно заряженными частицами, как следствие, реагирует на магнитное поле планеты. Поворачивается своим "положительным" концом по направлению отрицательных частиц и наоборот.

Малы размеры, но огромна сила

Что касается сильного взаимодействия, то его специфика несколько напоминает электромагнитный вид сил. Причиной тому служит наличие положительных и отрицательно заряженных элементов. Подобно электромагнитной силе, наличие разноимённых зарядов приводит к взаимодействию тел. Масса тел и расстояние между ними очень малы. Это область субатомного мира, где подобные объекты именуются частицами.

Эти силы действуют в области атомного ядра и обеспечивают связь между протонами, электронами, барионами и прочими элементарными частицами. На фоне их размеров, по сравнению с большими объектами, взаимодействие заряженных тел значительно сильнее, чем при электромагнитном типе сил.

Слабые силы и радиоактивность

Слабый вид взаимодействия связан непосредственно с распадом неустойчивых частиц и сопровождается высвобождением разного вида излучения в виде альфа-, бета- и гамма-частиц. Как правило, вещества и материалы с подобными характеристиками называют радиоактивными.

Этот вид сил называется слабым вследствие того, что слабее электромагнитного и сильного типа взаимодействия. Однако он мощнее, чем гравитационное взаимодействие. Дистанции в данном процессе между частицами весьма малы, порядка 2·10 −18 метров.

Факт обнаружения силы и определения её в ряд фундаментальных произошёл достаточно недавно.

С открытием в 1896 году Анри Беккерель явления радиоактивности веществ, в частности солей урана, было положено начало изучения этого вида взаимодействия сил.

Четыре силы создали Вселенную

Вся Вселенная существует благодаря четырём фундаментальным силам, открытым современной наукой. Они породили космос, галактики, планеты, звезды и различные процессы в том виде, в каком мы это наблюдаем. На данном этапе считается полным определение фундаментальных сил в природе, но, возможно, со временем мы узнаем о наличии новых сил, и знание природы мироздания станет на шаг ближе к нам.

Какие основные особенности взаимодействия тел?


Если на тело не действуют другие тела, то оно либо находится в покое, либо движется прямолинейно и равномерно. Взаимодействие тел приводит
к ускорению тел. Для двух данных взаимодействующих тел отношение модулей их
ускорений всегда одно и то же.

Простые наблюдения и опыты, например с тележками (рис. 3), приводят к следующим качественным заключениям: а) тело, на которое другие тела не действуют, сохраняет свою скорость неизменной; б) ускорение тела возникает под действием других тел, но зависит и от самого тела; в) действия тел друг на друга всегда носят характер взаимодействия. Эти выводы подтверждаются при наблюдении явлений в природе, технике, космическом пространстве только в инерциальных системах отсчета.

Взаимодействия отличаются друг от друга и количественно, и качественно. Например, ясно, что чем больше деформируется пружина, тем больше взаимодействие ее витков. Или чем ближе два одноименных заряда, тем сильнее они будут притягиваться. В простейших случаях взаимодействия количественной характеристикой является сила. Сила - причина ускорения тел (в инерциальной системе отсчета). Сила - это векторная физическая величина, являющаяся мерой ускорения, приобретаемого телами при взаимодействии. Сила характеризуется: а) модулем; б) точкой приложения; в) направлением.

Единица силы - ньютон (Н). 1 ньютон - это сила, которая телу массой 1 кг сообщает ускорение 1 м/с2 в направлении действия этой силы, если другие тела на него не действуют. Равнодействующей нескольких сил называют силу, действие которой эквивалентно действию тех сил, которые она заменяет. Равнодействующая является векторной суммой всех сил, приложенных к телу:

Качественно по своим свойствам взаимодействия также различны. Например, электрическое и магнитное взаимодействия связаны с наличием зарядов у частиц либо с движением заряженных частиц. Наиболее просто рассчитать силы в электродинамике: сила Ампера -, сила Лоренца -, кулоновская сила - и гравитационные си-лы: закон всемирного тяготения -. Такие механические силы, как сила упругости и сила трения, возникают в результате электромагнитного взаимодействия частиц вещества. Для их расчета необходимо использовать формулы: (закон Гука), - сила трения.

На основании обобщения огромного числа опытных фактов и наблюдений были сформулированы законы динамики. Такое обобщение было выполнено Исааком Ньютоном.

Первый закон Ньютона постулирует существова-ние инерционных систем отсчета и дает признак, пользуясь которым такие системы можно выделить из всего разнообразия систем отсчета: существуют такие системы отсчета, относительно которых посту¬пательно движущееся тело сохраняет свою скорость постоянной, если на него не действуют другие тела (или действия других тел компенсируются).

Второй закон Ньютона отражает фундаменталь¬ное свойство материального мира, в соответствии с которым относительно инерциальных систем отсчета ускорение тел возникает только под действием сил. Этот закон формулируется следующим образом. Ускорение, с которым движется тело, прямо пропорционально равнодействующей всех сил, дей-ствующих на тело, обратно пропорционально его массе и направлено так же, как и равнодействую¬щая сила: Часто основной закон динамики записывают в виде, что дает универсальный способ определения любых сил на основе кинематических методов измерения ускорения. Третий закон Ньютона является обобщением громадного количества опытных фактов, показывающих, что силы - результат взаимодействия тел. Он формулируется следующим образом: тела действуют друг на друга с силами, равными по модулю и противоположными по направлению. Распространенные ошибки1. Многие абитуриенты не понимают, какая связь существует между законами Ньютона. Приходилось слышать такие ответы, в которых говорилось, что будто бы первый закон Ньютона является следствием второго закона Ньютона. Это не верно. Первый закон Ньютона (закон инерции) - важный и самостоятельный закон. Он утверждает, что если на тело не действуют другие тела, то оно находится в состоянии покоя или равномерного прямолинейного движения относительно инерциальной системы отсчета. Из этого закона следует, что причиной изменения скоростя является сила.

Взаимодействие тел

Примеров взаимодействия тела можно привести сколько угодно. Когда вы, находясь в лодке, начнёте за веревку подтягивать другую, то и ваша лодка обязательно продвинется вперед. Действуя на вторую лодку, вы заставляете ее действовать на вашу лодку.

Если вы ударите ногой по футбольному мячу, то немедленно ощутите обратное действие на ногу. При соударении двух бильярдных шаров изменяют свою скорость, т.е. получают ускорение оба шара. Все это проявление общего закона взаимодействия тел.

Действия тел друг на друга носят характер взаимодействия не только при непосредственном контакте тел. Положите, например, на гладкий стол два сильных магнита с разными полюсами навстречу друг другу, и вы тут же обнаружите, что начнут двигаться навстречу друг другу. Земля притягивает Луну (сила всемирного тяготения) и заставляет ее двигаться по криволинейной траектории; в свою очередь Луна также притягивают Землю (тоже сила всемирного тяготения). Хотя, естественно, в системе отсчёта, связанной с Землей, ускорение земли, вызываемое этой силой, нельзя обнаружить непосредственно, оно проявляется в виде приливов.

Выясним с помощью опыта, как связаны между собой силы взаимодействия двух тел. Грубые измерения сил можно произвести на следующих опытах:

1 опыт. Возьмем два динамометра, зацепим друг за друга их крючки, и взявшись за кольца, будем растягивать их, следя за показаниями, обоих динамометров.

Мы увидим, что при любых растяжениях показания обоих динамометров будут одинаковы; значит, сила, с которой первый динамометр действует на второй, равна силе, с которой второй динамометр действует на первый.

2 опыт. Возьмем достаточно сильный магнит и железный брусок, и положим их на катки, чтобы уменьшить трение о стол. К магниту и бруску прикрепим одинаковые мягкие пружины, зацепленными другими концами на столе. Магнит и брусок притянутся друг к другу и растянут пружины.

Опыт показывает, что к моменту прекращения движения пружины оказываются растянутыми одинаково. Это означает, что на оба тела со стороны пружин действуют одинаковые по модулю и противоположные по направлению силы.

Так как магнит покоится, то сила равна по модулю и противоположна по направлению силе, с которой действует на него брусок.

Точно также равны по модулю и противоположны по направлению силы, действующие на брусок со стороны магнита и пружины.

Опыт показывает, силы взаимодействия между двумя телами равны по модулю и противоположны по направлению и в тех случаях, когда тела движутся.

3 опыт. На двух тележках, которые могут катиться по рельсам, стоят два человека А и В. Они держат в руках концы веревки. Легко обнаружить, что независимо от того, кто натягивает веревку, А или В или оба вместе, тележки всегда приходят в движение одновременно и притом в противоположных направлениях. Измеряя ускорения тележек, можно убедиться, что ускорения обратно пропорциональны массам каждой из тележек (вместе с человеком). Отсюда следует, что силы, действующие на тележки, равны по модулю.

Первый закон Ньютона. Инерциальные системы отсчета

В качестве первого закона динамики Ньютон принял закон, установленный еще Галилеем: материальная точка сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не выведет ее из этого состояния.

Первый закон Ньютона показывает, что покоя или равномерного прямолинейного движения не требует для своего поддержания каких либо внешних воздействий. В этом проявляется особое динамическое свойство тел, называемое их инертностью.

Соответственно первый закон Ньютона называют законом инерции, а движение тела в отсутствии воздействий со стороны других тел – движением по инерции.

Механическое движение относительно: его характер для одного и того же тела может быть различным в разных системах отсчета, движущихся друг относительно друга. Например, космонавт, находящийся на борту искусственного спутника Земли, неподвижен в системе отсчета, связанной со спутником. В то же время по отношению к Земле он движется вместе со спутником по эллиптической орбите, т.е. не равномерно и не прямолинейно.

Естественно поэтому, что первый закон Ньютона должен выполняться не во всякой системе отсчета. Например, шар, лежащий на гладком полу каюты корабля, который идет прямолинейно и равномерно, может прийти в движение по полу без всякого воздействия на него со стороны каких-либо тел. Для этого достаточно, чтобы скорость корабля начала изменяться.

Система отсчета, по отношению к которой материальная точка, свободная от внешних воздействий, покоится или движется равномерно и прямолинейно, называется инерциальной системой отсчета. Содержание первого закона ржание первого закона Ньютона сводится по существу к двум утверждениям: во первых, что все тела обладают свойством инертности и, во вторых, что существуют инерциальные системы отсчета.

Любые две инерциальные системы отсчета могут двигаться друг относительно друга только поступательно и притом равномерно и прямолинейно. Экспериментально установлено, что практически инерциальна гелиоцентрическая система отсчета, начало координат которой находится в центре масс Солнечной системы (приближенно – в центре Солнца), а оси проведены в направлении трех удаленных звезд, выбранных, например, так, чтобы оси координат были взаимно перпендикулярны.

Лабораторная система отсчета, оси координат которой жестко связаны с Землей, не инерциальна главным образом из-за суточного вращения Земли. Однако Земля вращается столь медленно, что максимальное нормальное ускорение точек ее поверхности в суточном вращении не превосходит 0,034м/.поэтому в большинстве практических задач лабораторную систему отсчета можно приближенно считать инерциальной.

Инерциальные системы отсчета играют особую роль не только в механике, но также и во всех других разделах физики. Это связано с тем, что, согласно принципу относительности Эйнштейна, математическое выражение любого физического закона должно иметь один и тот же вид во всех инерциальных системах отсчета.

Силой называется векторная величина, являющаяся мерой механического действие на рассматриваемое тело со стороны других тел. Механическое взаимодействие может осуществляться как между непосредственно контактирующими телами (например, при трении, при давлении тел друг на друга), так и между удаленными телами. Особая форма материи, связывающая частицы вещества в единые системы и передающая с конечной скоростью действия одних частиц на другие, называются физическим полем, или просто полем.

Взаимодействие между удаленными телами осуществляется посредством создаваемых ими гравитационных и электромагнитных полей (например, притяжении планет к Солнцу, взаимодействие заряженных тел, проводников с током и т.п.). Механическое действие на данное тело со стороны других тел проявляется двояко. Оно способно вызывать, во-первых, изменение состояния механического движения рассматриваемого тела, а во-вторых, - его деформацию. Оба эти проявления действия силы могут служить основой для измерения сил. Например, измерения сил с помощью пружинного динамометра основанного на законе Гука для продольного растяжения. пользуясь понятием силы в механике обычно говорят о движении и деформации тела под действием приложенных к нему сил.

При этом, конечно, каждой силе всегда соответствует некоторое тело, действующее на рассматриваемое с этой силой.

Сила F полностью определена, если заданы ее модуль, направление в пространстве и точка приложения. Прямая, вдоль которой направлена сила, называется линией действия силы.

Поле, действующее на материальную точку с силой F, называется стационарным полем, если оно не изменяется с течением времени t, т.е. если в любой точке поля сила F не зависит явно от времени:

Для стационарности поля необходимо, чтобы создающие его тела покоились относительно инерциальной системы отсчета, используемой при рассмотрении поля.

Одновременное действие на материальную точку M нескольких сил эквивалентно действию одной силы, называемой равнодействующей, или результирующей, силой и равной их геометрической сумме.

Она представляет собой замыкающую многоугольника сил


Масса. Импульс

В классической механике массой материальной точки называется положительная скалярная величина, являющаяся мерой инертности этой точки. Под действием силы материальная точка изменяет свою скорость не мгновенно, постепенно, т.е. приобретает конечное по величине ускорение, которое тем меньше, чем больше масса материальной точки. Для сравнения масс и двух материальных точек достаточно измерить модули и ускорений, приобретаемых этими точками под действием одной и той же силы:

Обычно массу тела находят путем взвешивания на рычажных весах.

В классической механике считается, что:

а) Масса материальной точки не зависит от состояния движения точки, являясь ее неизменной характеристикой.

б) Масса – величина аддитивная, т.е. масса системы (например, тела) равна сумме масс вех материальных точек, входящих в состав этой системы.

в) Масса замкнутой системы остается неизменной при любых процессах, происходящих в этой системе (закон сохранения массы).

Плотностью ρ тела в данной его точке M называется отношение массы dm малого элемента тела, включающего точку M, к величине dV объема этого элемента:

Размеры рассматриваемого элемента должны быть столь малы, чтобы изменением плотности в его пределах можно было во много раз больше межмолекулярных расстояний.

Тело называется однородным, если во всех его точках плотность одинакова. Масса однородного тела равна произведению его плотности на объем:

Масса неоднородного тела:

где ρ – функция координат, а интегрирование проводится по всему объему тела. Средней плотностью (ρ) неоднородного тела называется отношение его массы к объему: (ρ)=m/V.

Центром масс системы материальных точек называется точка С, радиус-вектор которой равен:

где и – масса и радиус-вектор i-й материальной точки, n – общее число материальных точек в системе, а m= - масса всей системы.

Скорость центра масс:

Векторная величина , равная произведению массы материальной точки на ее скорость , называется импульсом, или количеством движения, этой материальной точки. Импульсом системы материальных точек называется вектор p, равный геометрической сумме импульсов всех материальных точек системы:

импульс системы равен произведению массы всей системы на скорость центра ее масс:

Второй закон Ньютона

Основным законом динамики материальной точки является второй закон Ньютона, который говорит о том, как изменяется механическое движение материальной точки под действием приложенных к ней сил. Второй закон Ньютона гласит: скорость изменения импульса ρ материальной точки равна действующей на нее силе F, т.е.

где m и v – масса и скорость материальной точки.

Если на материальную точку одновременно действуют несколько сил, то под силой F во втором законе Ньютона нужно понимать геометрическую сумму всех действующих сил – как активных, так и реакций связей, т.е. равнодействующую силу.

Векторная величина F dt называется элементарном импульсом силы F за малое время dt ее действия. Импульс силы F за конечный промежуток времени от до равен определенному интегралу:


где F, в общем случае, зависит от времени t.

Согласно второму закону Ньютона изменение импульса материальной точки равно импульсу действующей на нее силы:

dp = F dt и ,

где – значение импульса материальной точки в конце () и в начале () рассматриваемого промежутка времени.

Поскольку в ньютоновской механике масса m материальной точки не зависит от состояния движения точки, то

Поэтому математическое выражение второго закона Ньютона можно также представить в форме

где – ускорение материальной точки, r – ее радиус-вектор. Соответственно формулировка второго закона Ньютона гласит: ускорение материальной точки совпадает по направлению с действующей на нее силой и равно отношению этой силы к массе материальной точки.

Касательное и нормальное ускорение материальной определяются соответствующими составляющими силы F


где – модуль вектора скорости материальной точки, а R – радиус кривизны ее траектории. Сила , сообщающая материальной точке нормальное ускорение, направлена к центру кривизны траектории точки и потому называется центростремительной силой.

Если на материальную точку одновременно действуют несколько сил , то ее ускорение

где . Следовательно, каждая из сил, одновременно действующих на материальную точку, сообщает ей такое же ускорение, как если бы других сил не было (принцип независимости действия сил).

Дифференциальным уравнением движения материальной точки называется уравнение

В проекциях на оси прямоугольной декартовой системы координат это уравнение имеет вид

где x, y и z – координаты движущейся точки.


Третий закон Ньютона. Движение центра масс

Механическое действие тел друг на друга проявляется в виде их взаимодействия. Об этом говорит третий закон Ньютона: две материальные точки действуют друг на друга с силами, которые численно равны и направлены в противоположные стороны вдоль прямой, соединяющей эти точки.

Если – сила, действующая на i-ю материальную точку со стороны k-й, а – сила действующая на k-ю материальную точку со стороны i-й, то, согласно третьему закону Ньютона,

Сила приложены к разным материальным точкам и могут и взаимно уравновешиваться только в тех случаях, когда эти точки принадлежат одному и тому же абсолютно твердому телу.

Третий закон Ньютона является существенным дополнением к первому и второму законам. Он позволяет перейти от динамики отдельной материальной точки к динамике произвольной механической системы (системы материальных точек). Из третьего закона Ньютона следует, что в любой механической системе геометрическая сумма всех внутренних сил равна нулю:

где n – число материальных точек, входящих в состав системы, а .


Вектор , равный геометрической сумме все внешних сил, действующих на систему, называется главным вектором внешних сил:

где – результирующая внешних сил, приложенных к i-й материальной точке.

Из второго и третьего законов Ньютона следует, что первая производная по времени t от импульса p механической системы равна главному вектору всех внешних сил, приложенных к системе,

.

Это уравнение выражает закон изменения импульса системы.

Так как , где m – масса системы, а – скорость ее центра масс, то закон движения центра масс механической системы имеет вид

, или ,

где – ускорение центра масс. Таким образом, центр масс механической системы движется как материальная точка, масса которой равна массе всей системы и на которую действует сила, равная главному вектору внешних сил, приложенных к системе.

Если рассматриваемая система – твердое тело, которое движется поступательно, то скорости всех точек тела и его центра масс одинаковы и равны скорости v тела. Соответственно ускорение тела , и основное уравнение динамики поступательного движения твердого тела имеет вид

Утверждает, что в инерциальных системах ускорение тела пропорционально приложенной силе, физической величине, являющейся количественной мерой взаимодействия. Величину силы, характеризующей взаимодействие тел, можно определить, например, по деформации упругого тела, дополнительно введенного в систему так, что взаимодействие с ним полностью компенсирует исходное. Коэффициент пропорциональности...

Величину и направление всех сил, действующих в механической системе, и массу материальных тел, из которых она состоит, и можно с исчерпывающей точностью рассчитать ее поведение во времени. Именно второй закон Ньютона придает всей классической механике ее особую прелесть – начинает казаться, будто весь физический мир устроен, как наиточнейший хронометр, и ничто в нем не ускользнет от взгляда...

Рассмотрим движение автомобиля. Например, если автомобиль за каждую четверть часа (15 мин) проходит 15 км, за каждые полчаса (30 мин) - 30 км, а за каждый час - 60 км, считается, что он движется равномерно.

Неравномерное движение.

Если тело за любые равные промежутки времени проходит равные пути, его движение считается равномерным.

Равномерное движение встречается очень редко. Почти равномерно движется Земля вокруг Солнца, за год Земля делает один оборот вокруг Солнца.

Практически никогда водителю автомобиля не удается поддерживать равномерность движение - по разным причинам приходится то ускорять то замедлять езду. Движение стрелок часов (минутной и часовой) только кажется равномерным, в чем легко убедиться, наблюдая за движением секундной стрелки. Она то движется, то останавливается. Точно так же движутся и две остальные стрелки, только медленно, и поэтому их рывков не видно. Молекулы газов, ударяясь друг об друга, на какое-то время останавливаются, затем снова разгоняются. При следующих столкновениях, уже с другими молекулами, они снова замедляют свое движение в пространстве.

Все это примеры неравномерного движения. Так движется поезд, отходя от станции, проходя за одинаковые промежутки времени все бóльшие и бóльшие пути. Лыжник или конькобежец проходят на соревнованиях равные пути за различное время. Так движутся взлетающий самолет, открываемая дверь, падающая снежинка.

Если тело за равные промежутки времени проходит разные пути, то его движение называют неравномерным.

Неравномерное движение можно наблюдать на опыте. На рисунке изображена тележка с капельницей, из которой через одинаковые промежутки времени падают капли. При движении тележки под действием к ней груза мы видим, что расстояния между следами от капель неодинаковы. А это и означает, что за одинаковые промежутки времени тележка проходит разные пути.

Скорость. Единицы скорости.

Мы часто говорим, что одни тела движутся быстрее, другие медленнее. Например, по шоссе шагает турист, мчится автомобиль, в воздухе летит самолет. Допустим, что все они движутся равномерно, тем не менее движение этих тел будет отличаться.

Автомобиль движется быстрее пешехода, а самолет быстрее автомобиля. В физике величиной, характеризующей быстроту движения, называется скорость.

Предположим, что турист за 1 час проходит 5 км, автомобиль 90 км, а скорость самолета 850 км в час.

Скорость при равномерном движении тела показывает, какой путь прошло тело в единицу времени.

Таким образом, используя понятие скорости, мы можем теперь сказать, что турист, автомобиль и самолет движутся с различными скоростями.

При равномерном движении скорость тела остается постоянной.

Если велосипедист проезжает в течение 5 с путь, равный, 25 м, то его скорость будет равна 25м/5с = 5м/с.

Чтобы определить скорость при равномерном движении, надо путь, пройденный телом за какой-то промежуток времени, разделить на этот промежуток времени:

скорость = путь/время.

Скорость обозначают буквой v, путь - s, время - t. Формула для нахождения скорости будет иметь такой вид:

Скорость тела при равномерном движении - это величина, равная отношению пути ко времени, за которое этот путь пройден.

В Международной системе (СИ) Скорость измеряют в метрах в секунду (м/с).

Это значит, что за единицу скорости принимается скорость такого равномерного движения, при котором за одну секунду тело проходит путь, равный 1 метру.

Скорость тела можно измерять также в километрах в час (км/ч), километрах в секунду (км/с), сантиметрах в секунду (см/с).

Пример. Поезд, двигаясь равномерно, за 2 ч проходит путь, равный 108 км. Вычислите скорость движения поезда.

Итак, s = 108 км; t = 2 ч; v = ?

Решение. v = s/t, v = 108 км/2 ч = 54 км/ч. Легко и просто.

Теперь, выразим скорость поезда в единицах СИ, т.е километры переведем в метры, а часы в секунды:

54 км/ч = 54000 м/ 3600 с = 15м/с.

Ответ : v = 54 км/ч, или 15 м/с.

Таким образом, числовое значение скорости зависит от выбранной единицы.

Скорость, кроме числового значения, имеет направление.

Например, если требуется указать, где будет находиться через 2 ч самолет, вылетевший из Владивостока, то необходимо указать, не только значение его скорости, но и его пункт назначения, т.е. его направление. Величины, которые, кроме числового значения (модуля), имеют еще и направление, называются векторными.

Скорость - это векторная физическая величина.

Все векторные величины обозначают соответствующими буквами со стрелочкой. Например, скорость обозначается символом v со стрелочкой, а модуль скорости той же буквой, но без стрелочки v.

Некоторые физические величины не имеют направления. Они характеризуются только числовым значением. Это время, объем, длина и др. Они являются скалярными.

Если при движении тела его скорость изменяется от одного участка пути к другому, то такое движение является неравномерным. Для характеристики неравномерного движения тела, введено понятие средней скорости.

Например, поезд от Москвы до Санкт-Петербурга идет со скоростью 80 км/ч. Какую скорость имеют ввиду? Ведь скорость поезда на остановках равна нулю, после остановки - увеличивается, а перед остановкой - уменьшается.

В данном случае поезд движется неравномерно, а значит, скорость, равная 80 км/ч, - это средняя скорость движения поезда.

Она определяется почти так же, как и скорость при равномерном движении.

Чтобы определить среднюю скорость тела при неравномерном движении, надо весь пройденный путь разделить на все время движения:

Следует напомнить, что только при равномерном движении отношение s/t за любой промежуток времени будет постоянно.

При неравномерном движении тела средняя скорость характеризует движение тела за весь промежуток времени. Она не поясняет, как двигалось тело в различные моменты времени этого промежутка.

В таблице 1 приводится средние скорости движения некоторых тел.

Таблица 1

Средние скорости движения некоторых тел, скорость звука, радиоволн и света.

Расчет пути и времени движения.

Если известны скорость тела и время при равномерном движении, то можно найти пройденный им путь.

Поскольку v = s/t, то путь определяют по формуле

Чтобы определить путь, пройденный телом при равномерном движении, надо скорость тела умножить на время его движения.

Теперь, зная, что s = vt, можно найти время, в течение которого двигалось тело, т.е.

Чтобы определить время при неравномерном движении, надо путь, пройденном телом, разделить на скорость его движения.

Если тело движется неравномерно, то, зная его среднюю скорость движения и время, за которое происходит это движение, находят путь:

Пользуясь этой формулой, можно определить время при неравномерном движении тела:

Инерция.

Наблюдения и опыты показывают, что скорость тела сама по себе измениться не может.

Опыт с тележками. Инерция.

Футбольный мяч лежит на поле. Ударом ноги футболист приводит его в движение. Но сам мяч не изменит свою скорость и не начнет двигаться, пока на него не подействуют другие тела. Пуля, вложенная в ствол ружья, не вылетит до тех пор, пока ее не вытолкнут пороховые газы.

Таким образом, и мяч и пуля не имеют свою скорость, пока на них не подействуют другие тела.

Футбольный мяч, катящийся по земле, останавливается из-за трения о землю.

Тело уменьшает свою скорость и останавливается не само по себе, а под действием других тел. Под действием другого тела происходит также изменение направления скорости.

Теннисный мяч меняет направление движения после удара о ракетку. Шайба после удара о клюшку хоккеиста также изменяет направление движения. Направление движения молекулы газа меняется при ударении ее с другой молекулой или со стенками сосуда.

Значит, изменение скорости тела (величина и направления) происходит в результате действия на него другого тела.

Проделаем опыт. Установим наклонно на столе доску. Насыплем на стол, на небольшом расстоянии от конца доски, горку песка. Поместим на наклонную доску тележку. Тележка, скатившись с наклонной доски быстро останавливается, попав в песок. Скорость тележки уменьшается очень быстро. Ее движение неравномерно.

Выровняем песок и вновь отпустим тележку с прежней высоты. Теперь тележка пройдет большее расстояние по столу, прежде чем остановится. Ее скорость изменяется медленнее, а движение становится ближе к равномерному.

Если совсем убрать песок с пути тележки, то препятствием ее движению будет только трение о стол. Тележка до остановки еще медленнее, и проедет она больше,чем в первый, и во второй разы.

Итак, чем меньше действие другого тела на тележку, тем дольше сохраняется скорость ее движения и тем ближе оно к равномерному.

Как же будет двигаться тело, если не него совсем не будут действовать другие тела? Как это можно установить на опыте? Тщательные опыты по изучению движения тел были впервые проведены Г. Галилеем. Они позволили установить, что если на тело не действуют другие тела, то оно находится или в покое, или движется прямолинейно, и равномерно относительно Земли.

Явление сохранения скорости тела при отсутствии действия на него других тел, называется инерцией .

Инерция - от латинского инерциа - неподвижность, бездеятельность.

Таким образом, движения тела при отсутствии действия на него другого тела, называется движением по инерции.

Например, пуля вылетевшая из ружья, так и летела бы, сохраняя свою скорость, если бы на нее не действовало другое тело - воздух (а точнее, молекулы газов, которые в нем находятся.). Вследствие этого скорость пули уменьшается. Велосипедист, перестав крутит педали, продолжает двигаться. Он смог бы сохранить скорость своего движения, если бы на него не действовала бы сила трения.

Итак, если на тело не действуют другие тела, то оно движется с постоянной скоростью.

Взаимодействие тел.

Вам уже известно, что при неравномерном движении скорость тела меняется с течением времени. Изменение скорости тела происходит под действием другого тела.

Опыт с тележками. Тележки приходят в движение относительно стола.

Проделаем опыт. К тележке прикрепим упругую пластинку. Затем изогнем ее и свяжем нитью. Тележка относительно стола находится в покое. Станет ли двигаться тележка, если упругая пластинка выпрямится?

Для этого перережем нить. Пластинка выпрямится. Тележка же останется на прежнем месте.

Затем вплотную к согнутой пластинке поставим еще одну такую же тележку. Вновь пережжем нить. После этого обе тележки приходят в движение относительно стола. Они разъезжаются в разные стороны.

Чтобы изменить скорость тележки, понадобилось второе тело. Опыт показал, что скорость тела меняется только в результате действия на него другого тела (второй тележки). В нашем опыте мы наблюдали, что в движение пришла и вторая тележка. Обе стали двигаться относительно стола.

Опыт с лодками. Обе лодки приходят в движение.

Тележки действуют друг на друга , т.е они взаимодействуют. Значит, действие одного тела на другое не может быть односторонним, оба тела действуют друг на друга, т. е. взаимодействуют.

Мы рассмотрели самый простой случай взаимодействия двух тел. Оба тела (тележки) до взаимодействия находились в покое относительно друг друга, и относительно стола.

Опыт с лодками. Лодка отходит в сторону, противоположную прыжку.

Например, пуля также находилась в покое относительно ружья перед выстрелом. При взаимодействии (во время выстрела) пуля и ружье движутся в разные стороны. Получается явление - отдачи.

Если человек, сидящий в лодке, отталкивает от себя другую лодку, то происходит взаимодействие. Обе лодки приходят в движение.

Если же человек прыгает с лодки на берег, то лодка отходит в сторону, противоположную прыжку. Человек подействовал на лодку. В свою очередь, и лодка действует на человека. Он приобретает скорость, которая направлена к берегу.

Итак, в результате взаимодействия оба тела могут изменить свою скорость.

Масса тела. Единица массы.

При взаимодействии двух тел скорости первого и второго тела всегда меняются.

Опыт с тележками. Одна больше другой.

Одно тело после взаимодействия приобретает скорость, которая может значительно отличаться от скорости другого тела. Например, после выстрела из лука скорость стрелы гораздо больше скорости, которую приобретает тетива лука после взаимодействия.

Почему так происходит? Проведем опыт, описанный в параграфе 18. Только теперь, возьмем тележки разного размера. После того, как нить пережгли, тележки разъезжаются с разными скоростями. Тележка, которая после взаимодействия движется медленнее, называется более массивной . У нее больше масса . Тележка, которая после взаимодействия движется с большей скоростью, имеет меньшую массу. Значит, тележки имеют разную массу.

Скорости, которые приобрели тележки в результате взаимодействия, можно измерить. По этим скоростям сравнивают массы взаимодействующих тележек.

Пример. Скорости тележек до взаимодействия равны нулю. После взаимодействия скорость одной тележки стала равна 10 м/с, а скорость другой 20 м/с. Поскольку скорость, которую приобрела вторая тележка, в 2 раза больше скорости первой, то и ее масса в 2 раза меньше массы первой тележки.

В случае, если после взаимодействия скорости изначально покоившихся тележек одинаковы, то их массы одинаковы. Так, в опыте, изображенном на рисунке 42, после взаимодействия тележки разъезжаются с равными скоростями. Следовательно, их массы были одинаковы. Если после взаимодействия тела приобрели разные скорости, то их массы различны.

Международный эталон килограмма. На картинке: эталон килограмма в США.

Во сколько раз скорость первого тела больше (меньше) скорости второго тела, во столько раз масса первого тела меньше (больше) массы второго.

Чем меньше меняется скорость тела при взаимодействии, тем большую массу оно имеет. Такое тело называется более инертным .

И наоборот, чем больше меняется скорость тела при взаимодействии, тем меньшую массу оно имеет, тем меньше оно инертно .

Значит, что для всех тел характерно свойство по-разному менять свою скорость при взаимодействии. Это свойство называется инертностью .

Масса тела - это физическая величина, которая характеризует его инертность.

Следует знать, что любое тело: Земля, человек, книга и т.д. - обладает массой.

Масса обозначается буквой m. За единицу массы в СИ принят килограмм (1 кг ).

Килограмм - это масса эталона. Эталон изготовлен из сплава двух металлов: платины и иридия. Международный эталон килограмма хранится в г. Севре (близ Парижа). С международного эталона сделано более 40 точнейших копий, разосланных в разные страны. Одна из копий международного эталона находится в нашей стране, в институте метрологии им. Д. И. Менделеева в Санкт-Петербурге.

На практике используют и другие единицы массы: тонна (т ), грамм (г ), миллиграмм (мг ).

1 т = 1000 кг (10 3 кг) 1 г = 0,001 кг (10 -3 кг)
1 кг = 1000 г (10 3 г) 1 мг = 0,001 г (10 -3 г)
1 кг = 1 000 000 мг (10 6 мг) 1 мг = 0,000001 кг (10 -6 кг)

В дальнейшем при изучении физики понятие массы будет раскрыто глубже.

Измерение массы тела на весах.

Для того, чтобы измерить массу тела, можно использовать метод, описанный в параграфе 19.

Учебные весы.

Сравнивая скорости, приобретенные телами при взаимодействии, определяют, во сколько раз масса одного тела больше (или меньше) массы другого. Измерить массу тела этим способом можно, если масса одного из взаимодействующих тел известна. Таким способом определяют в науке массы небесных тел, а также молекул и атомов.

На практике массу тела можно узнать с помощью весов. Весы бывают различного типа: учебные, медицинские, аналитические, аптекарские, электронные и др.

Специальный набор гирь.

Рассмотрим учебные весы. Главной частью таких весов, является коромысло. К середине коромысла прикреплена стрелка - указатель, которая движется вправо или влево. К концам коромысла подвешены чашки. При каком условии весы будут находиться в равновесии?

Поместим на чашки весов тележки, которые применялись в опыте (см. § 18). поскольку при взаимодействии тележки приобрели одинаковые скорости, то мы выяснили, что их массы одинаковы. Следовательно, весы будут находится в равновесии. Это значит, что массы тел, лежащих на чашках весов, равны друг другу.

Теперь на одну чашку весов, поместим тело, массу которого надо узнать. На другую будем ставить гирьки, массы которых известны, до тех пор, пока весы не окажутся в равновесии. Следовательно, масса взвешиваемого тела будет равна общей массе гирь.

При взвешивании используется специальный набор гирь.

Различные весы предназначены для взвешивания разных тел, как очень тяжелых, так и очень легких. Так, например, с помощью вагонных весов можно определить массу вагона от 50 т до 150 т. Массу комара, равную 1мг, можно узнать с помощью аналитических весов.

Плотность вещества.

Взвешиваем два цилиндра равного объема. Один алюминиевый, а другой - свинцовый.

Тела, окружающие нас, состоят из различных веществ: дерева, железа, резины и т.д.

Масса любого тела зависит не только от его размеров, но и оттого, из какого вещества оно состоит. Поэтому тела, имеющие одинаковые объемы, но состоящие из разных веществ, имеют разные массы.

Проведем такой опыт. Взвесим два цилиндра одинакового объема, но состоящие из разных веществ. Например, один из - алюминия, другой из - свинца. Опыт показывает, что масса алюминиевого меньше свинцового, то есть, алюминий легче свинца.

В то же время тела с одинаковыми массами, состоящие из разных веществ, имеют разные объемы.

Железный брус массой 1 т занимает 0,13 кубических метров. А лед массой 1 т - объем 1,1 метров кубических.

Так, железный брус массой 1 т занимает объем 0,13 м 3 , а лед с такой же массой в 1 т - объем 1,1 м 3 . Объем льда почти в 9 раз больше объема железного бруса. Это объясняется тем, что разные вещества могут иметь разную плотность.

Отсюда следует, что тела объемом, например, 1 м 3 каждое, состоящие из разных веществ, имеют разные массы. Приведем пример. Алюминий объемом 1 м 3 имеет массу 2700 кг, свинец такого же объема имеет массу 11 300 кг. То есть, при одинаковом объеме (1 м 3), свинец, имеет массу, превышающую массу алюминия, примерно в 4 раза.

Плотность показывает, чему равна масса вещества, взятого в определённом объёме.

Как же можно найти плотность какого-либо вещества?

Пример. Мраморная плита имеет объем 2м 3 , а ее масса равна 5400 кг. Надо определить плотность мрамора.

Итак, нам известно, что мрамор объемом 2м 3 имеет массу 5400 кг. Значит, 1 м 3 мрамора будет иметь массу в 2 раза меньшую. В нашем случае - 2700 кг (5400: 2 = 2700). Таким образом, плотность мрамора будет равна 2700 кг на 1 м 3 .

Значит, если известна масса тела и его объем, можно определить плотность.

Чтобы найти плотность вещества, надо массу тела разделить на его объем.

Плотность это физическая величина, которая равна отношению массы тела к его объему:

плотность = масса/объем.

Обозначим величины, входящие в это выражение, буквами: плотность вещества - ρ (греч. буква "ро"), масса тела - m, его объем - V. Тогда получим формулу для вычисления плотности:

Единицей плотности вещества в СИ является килограмм на кубический метр (1кг/м 3).

Плотность вещества выражают очень часто и в граммах на кубический сантиметр (1г/см 3).

Если плотность вещества выражена в кг/м 3 , то ее можно перевести в г/см 3 следующим образом.

Пример. Плотность серебра 10 500 кг/м 3 . Выразите ее в г/см 3 .

10 500 кг = 10 500 000 г (или 10,5 * 10 6 г),

1м3 = 1 000 000 см 3 (или 10 6 см 3).

Тогда ρ = 10 500 кг/м 3 = 10,5 * 10 6 / 10 6 г/см 3 = 10,5 г/см 3 .

Следует помнить, что плотность одного и того же вещества в твердом, жидком и газообразном состояниях различна. Так, плотность льда равна 900 кг/м 3 , воды 1000 кг/м 3 , а водяного пара - 0,590 кг/м 3 . Хотя все это состояния того же вещества - воды.

Ниже приведены таблицы плотностей некоторых твердых тел, жидкостей и газов.

Таблица 2

Плотности некоторых твердых тел (при норм. атм. давл., t = 20 °C)

Твердое тело ρ, кг/м 3 ρ, г/см 3 Твердое тело ρ, кг/м 3 ρ, г/см 3
Осмий 22 600 22,6 Мрамор 2700 2,7
Иридий 22 400 22,4 Стекло оконное 2500 2,5
Платина 21 500 21,5 Фарфор 2300 2,3
Золото 19 300 19,3 Бетон 2300 2,3
Свинец 11 300 11,3 Кирпич 1800 1,8
Серебро 10 500 10,5 Сахар-рафинад 1600 1,6
Медь 8900 8,9 Оргстекло 1200 1,2
Латунь 8500 8,5 Капрон 1100 1,1
Сталь, железо 7800 7,8 Полиэтилен 920 0,92
Олово 7300 7,3 Парафин 900 0,90
Цинк 7100 7,2 Лед 900 0,90
Чугун 7000 7 Дуб (сухой) 700 0,70
Корунд 4000 4 Сосна (сухая) 400 0,40
Алюминий 2700 2,7 Пробка 240 0,24

Таблица 3

Плотности некоторых жидкостей (при норм. атм. давл. t=20 °C)

Таблица 4

Плотности некоторых газов (при норм. атм. давл. t=20 °C)

Расчет массы и объема по его плотности.

Знать плотность веществ очень важно для различных практических целей. Инженер, проектируя машину, заранее по плотности и объему материала может рассчитать массу будущей машины. Строитель может определить, какова будет масса строящегося здания.

Следовательно, зная плотность вещества и объем тела, всегда можно определить его массу.

Поскольку плотность вещества можно найти по формуле ρ = m/V , то отсюда можно найти массу т.е.

m = ρV.

Чтобы вычислить массу тела, если известны его объем и плотность, надо плотность умножить на объем.

Пример. Определите массу стальной детали объем 120 см 3 .

По таблице 2 находим, что плотность стали равна 7,8 г/см 3 . Запишем условие задачи и решим ее.

Дано :

V = 120 см 3 ;

ρ = 7,8 г/см 3 ;

Решение :

m = 120 см 3 · 7,8 г/см 3 = 936 г.

Ответ : m = 936 г.

Если известна масса тела и его плотность, то объем тела можно выразить из формулы m = ρV , т.е. объем тела будет равен:

V = m/ρ.

Чтобы вычислить объем тела, если известна его масса и плотность, надо массу разделить на плотность.

Пример. Масса подсолнечного масла, заполняющего бутылку, равна 930 г. Определите объем бутылки.

По таблице 3 находим, что плотность подсолнечного масла равна 0,93 г/см 3 .

Запишем условие задачи и решим ее.

Дано:

ρ = 0,93 г/см 3

Решение:

V = 930/0.93 г/см 3 = 1000 см 3 = 1л.

Ответ : V = 1 л.

Для определения объема пользуются формулой, как правило, в тех случаях, когда объем сложно найти с помощью простых измерений.

Сила.

Каждый из нас постоянно встречается с различными случаями действия тел друг на друга. В результате взаимодействия скорость движения какого-либо тела меняется. Вам уже известно, что скорость тела меняется тем больше, чем меньше его масса. Рассмотрим некоторые примеры, подтверждающие это.

Толкая руками вагонетку, мы можем привести ее в движение. Скорость вагонетки меняется под действием руки человека.

Кусочек железа, лежащий на пробке, опущенной в воду, притягивается магнитом. Кусочек железа и пробка изменяют свою скорость под действием магнита.

Действуя на пружину рукой, можно ее сжать. Сначала в движение приходит конец пружины. Затем движение передается остальным ее частям. Сжатая пружина, распрямляясь, может, например, привести в движение шарик.

При сжатии пружины действующим телом была рука человека. Когда пружина распрямляется, действующим телом является сама пружина. Она приводит в движение шарик.

Ракеткой или рукой можно остановить или изменить направление движения летящего мячика.

Во всех приведенных примерах одно тело под действием другого тела приходит в движение, останавливается, или изменяет направление своего движения.

Таким образом, скорость тела меняется при взаимодействии его с другими телами.

Часто не указывается какое тело и как действовало на данное тело. Просто говорится, что на тело действует сила или к нему приложена сила . Значит, силу можно рассматривать как причину изменения скорости движения.

Толкая руками вагонетку, мы можем привести ее в действие.

Опыт с кусочком железа и магнитом.

Опыт с пружиной. Приводим в движение шарик.

Опыт с ракеткой и летящим шариком.

Сила, действующая на тело, может не только изменить скорость своего тела, но и отдельных его частей.

Доска, лежащая на опорах, прогибается, если на нее садится человек.

Например, если надавить пальцами на ластик или кусочек пластилина, он сожмется и изменит свою форму. Это называется деформацией .

Деформацией называется любое изменение формы и размера тела.

Приведем другой пример. Доска, лежащая на опорах, прогибается, если на нее садится человек, или любой другой груз. Середина доски перемещается на большее расстояние, чем края.

Под действием силы скорость различных тел за одно и то же время может измениться одинаково. Для этого необходимо к этим телам приложить разные силы.

Так, чтобы привести в движение грузовую машину, необходима большая сила, чем для легкового автомобиля. Значит, числовое значение силы может быть различным: большим или меньшим. Что же такое сила?

Сила является мерой взаимодействия тел.

Сила - физическая величина, значит, ее можно измерить.

На чертеже сила отображается в виде отрезка прямой со стрелкой на конце.

Сила, как и скорость, является векторной величиной . Она характеризуется не только числовым значением, но и направлением. Сила обозначается буквой F со стрелочкой (как мы помним стрелочкой обозначается направление), а ее модуль тоже буквой F, но без стрелочки.

Когда говорят о силе, важно указывать, к какой точке тела приложена действующая сила.

На чертеже силу изображают в виде отрезка прямой со стрелкой на конце. Начало отрезка - точка А есть точка приложения силы. Длина отрезка условно обозначает в определенном масштабе модуль силы.

Итак, результат действия силы на тело зависит от ее модуля, направления и точки приложения.

Явление тяготения. Сила тяжести.

Выпустим камень из рук - он упадет на землю.

Если выпустить камень из рук - он упадет на землю. То же самое произойдет и с любым другим телом. Если мяч бросить в горизонтальном направлении, он не летит прямолинейно и равномерно. Его траекторией будет кривая линия.

Камень летит по кривой линии.

Искусственный спутник Земли также не летит по прямой, он летит вокруг Земли.

Искусственный спутник движется вокруг Земли.

В чем же причина наблюдаемых явлений? А вот в чем. На эти тела действует сила - сила притяжения к Земле. Из-за притяжения к Земле падают тела, поднятые над Землей, а потом опущенные. А также, из-за этого притяжения, мы ходим по Земле, а не улетаем в бесконечный Космос, где нет воздуха, чтоб дышать.

Листья деревьев опускаются на Землю, потому что Земля притягивает их. Благодаря притяжению к Земле течет вода в реках.

Земля притягивает к себе любые тела: дома, людей, Луну, Солнце, воду в морях и океанах и др. В свою очередь, и Земля притягивается ко всем этим телам.

Притяжение существует не только между Землей и перечисленными телами. Все тела притягиваются друг к другу. Притягиваются между собой Луна и Земля. Притяжение Земли к Луне вызывает приливы и отливы воды. Огромные массы воды поднимаются в океанах и морях дважды в сутки на много метров. Вам хорошо известно, что Земля и другие планеты движутся вокруг Солнца, притягиваясь к нему и друг к другу.

Притяжение всех тел Вселенной друг к другу называется всемирным тяготением.

Английский ученый Исаак Ньютон первым доказал и установил закон всемирного тяготения.

Согласно этому закону, силы притяжения между телами тем больше, чем больше массы этих тел. Силы притяжения между телами уменьшаются, если увеличивается расстояние между ними.

Для всех живущих на Земле одна из особенно важных значений имеет сила притяжения к Земле.

Сила, с которой Земля притягивает к себе тело, называется силой тяжести.

Сила тяжести обозначается буквой F с индексом: Fтяж. Она всегда направлена вертикально вниз.

Земной шар немного сплюснут у полюсов, поэтому тела, находящиеся у полюсов расположены немного ближе к центру Земли. Поэтому, сила тяжести на полюсе немного больше, чем на экваторе, или на других широтах. Сила тяжести на вершине горы несколько меньше, чем у ее подножия.

Сила тяжести прямо пропорциональна массе данного тела.

Если сравнивать два тела с разной массой, то тело с большей массой - тяжелее. Тело же с меньшей массой - легче.

Во сколько раз масса одного тела больше массы другого тела, во столько же раз и сила тяжести, действующая на первое тело, больше силы тяжести, действующей на второе. Когда массы тел одинаковы, то одинаковы и действующие на них силы тяжести.

Сила упругости. Закон Гука.

Вам уже известно, что на все тела, находящиеся на Земле, действует сила тяжести.

На книгу, лежащую на столе, также действует сила тяжести, но она не проваливается сквозь стол, а находится в покое. Повесим-ка тело на нити. Оно падать не будет.

Закон Гука. Опыт.

Почему же покоятся тела, лежащие на опоре или подвешенные на нити? По-видимому, сила тяжести уравновешивается какой-то другой силой. Что же это за сила и откуда она берется?

Проведем опыт. На середину горизонтально расположенной доски, расположенную на опоры, поставим гирю. Под действием силы тяжести гиря начнет двигаться вниз и прогнет доску, т.е. доска деформируется. При этом возникает сила, с которой доска действует на тело, расположенное на ней. Из этого опыта можно сделать вывод, что на гирю, кроме силы тяжести направленной вертикально вниз, действует другая сила. Эта сила направлена вертикально вверх. Она и уравновесила силу тяжести. Эту силу называют силой упругости.

Итак, сила, возникающая в теле в результате его деформации и стремящаяся вернуть тело в исходное положение, называется силой упругости.

Силу упругости обозначают буквой F с индексом Fупр.

Чем сильнее прогибается опора(доска), тем больше сила упругости. Если сила упругости становится равной силе тяжести, действующей на тело, то опора и тело останавливаются.

Теперь подвесим тело на нити. Нить (подвес) растягивается. В нити (подвесе), также как и в опоре, возникает сила упругости. При растяжении подвеса сила упругости будет равна силе тяжести, то растяжение прекращается. Сила упругости возникает только при деформации тел. Если исчезает деформация тела, то исчезает и сила упругости.

Опыт с телом, подвешенным на нити.

Деформации бывают разных видов: растяжения, сжатия, сдвига, изгиба и кручения.

С двумя видами деформации мы уже познакомились - сжатия и изгиба. Более подробно эти и другие виды деформации вы изучите в старших классах.

Теперь попытаемся выяснить, от чего зависит сила упругости.

Английский ученый Роберт Гук , современник Ньютона, установил, как зависит сила упругости от деформации.

Рассмотрим опыт. Возьмем резиновый шнур. Один его конец закрепим в штативе. Первоначальная длина шнура была l 0 . Если к свободному концу шнура подвесить чашку с гирькой, то шнур удлинится. Его длина станет равной l. Удлинение шнура можно найти так:

Если менять гирьки на чашке, то будет меняться и длина шнура, а значит, ее удлинение Δl .

Опыт показал, что модуль силы упругости при растяжении (или сжатии) тела прямо пропорционален изменению длины тела.

В этом и заключается закон Гука. Записывается закон Гука следующим образом:

Fупр = -kΔl,

Вес тела - это сила, с которой тело вследствие притяжения к Земле действует на опору или подвес.

где Δl - удлинение тела (изменение его длины), k - коэффициент пропорциональности, который называется жесткостью.

Жесткость тела зависит от формы и размеров, а также от материала, из которого оно изготовлено.

Закон Гука справедлив только для упругой деформации. Если после прекращения действий сил, деформирующих тело, оно возвращается в исходное положение, то деформация является упругой.

Более подробно закон Гука и виды деформаций вы изучите в старших классах.

Вес тела.

В повседневной жизни очень часто используется понятие "вес" . Попытаемся выяснить что же это за величина. В опытах, когда тело ставили на опору, сжималась не только опора, но и тело, притягиваемое Землей.

Деформированное, сжатое тело давит на опору с силой, которую называют весом тела . Если тело подвешено на нити, то растянута не только нить, но и само тело.

Вес тела - это сила, с которой тело вследствие притяжения к Земле действует на опору или подвес.

Вес тела - это векторная физическая величина и обозначается она буквой P со стрелочкой над этой буквой, направленная вправо.

Однако следует помнить, что сила тяжести приложена к телу, а вес приложен к опоре или подвесу .

Если тело и опора неподвижны или движутся равномерно и прямолинейно, то вес тела по своему числовому значению равен силе тяжести, т.е.

P = Fтяж.

Следует помнить, что сила тяжести является результатом взаимодействия тела и Земли.

Итак, Вес тела - это результат взаимодействия тела и опоры (подвеса). Опора (подвес) и тело при этом деформируются, что приводит к появлению силы упругости.

Единицы силы. Связь между силой тяжести и массой тела.

Вам уже известно, что сила - это физическая величина. Она кроме числового значения (модуля) имеет направление, т. е. это векторная величина.

Силу, как и любую физическую величину, можно измерить, сравнить с силой, принятой за единицу.

Единицы физических величин всегда выбирают условно. Так, за единицу силы можно принять любую силу. Например, можно принять за единицы силы силу упругости какой-то пружины, растянутой до определенной длины. За единицу силы, можно принять и силу тяжести, действующей на тело.

Вы знаете, что сила является причиной изменения скорости тела. Именно поэтому за единицу силы, принята сила, которая за время 1с изменяет скорость тела массой 1 кг на 1 м/с.

В честь английского физика Ньютона эта единица названа ньютоном (1 Н ). Часто применяют и другие единицы - килоньютоны (кН ), миллиньютоны (мН ):

1кН=1000 Н, 1Н = 0,001 кН.

Попытаемся определить величину силы в 1 Н. Установлено, что 1 Н приблизительно равен силе тяжести, которая действует на тело массой 1/10 кг, или более точно 1/9,8 кг (т. е. около 102 г).

Необходимо помнить, что сила тяжести, действующая на тело, зависит от географической широты, на которой находится тело. Сила тяжести меняется при изменении высоты над поверхностью Земли.

Если известно, что единицей силы является 1 Н, то как рассчитать силу тяжести, которая действует на тело любой массы?

Известно, что, во сколько раз масса одного тела, больше массы другого тела, во столько же раз сила тяжести, действующей на первое тело, больше силы тяжести, действующей на второе тело. Таким образом, если на тело массой 1/9,8 кг действует сила тяжести равная 1 Н, то на тело 2/9,8 кг будет действовать сила тяжести, равная 2 Н.

На тело массой 5/9,8 кг - сила тяжести равная - 5 Н, 5,5/9,8 кг - 5,5 Н, и т. д. На тело массой 9,8/9,8 кг - 9,8 Н.

Поскольку 9,8/9,8 кг = 1 кг, то на тело массой в 1 кг будет действовать сила тяжести, равная 9,8 Н . Значение силы тяжести, действующей на тело массой 1 кг, можно записать так: 9,8 Н/кг.

Значит, если на тело массой 1 кг действует сила, равная 9,8 Н, то на тело массой 2 кг будет действовать сила, в 2 раза большая. Она будет равна 19,6 Н, и так далее.

Таким образом, чтобы определить силу тяжести, действующую на тело любой массы, необходимо 9,8 Н/кг умножить на массу этого тела.

Масса тела выражается в килограммах. Тогда получим, что:

Fтяж = 9,8 Н/кг · m.

Величину 9,8 Н/кг обозначают буквой g, и формула для силы тяжести будет иметь вид:

где m - масса, g - называется ускорением свободного падения . (Понятие ускорения свободного падения будет дано в 9 классе.)

При решении задач где не требуется большой точности, g = 9,8 Н/кг округляют до 10 Н/кг.

Вам уже известно, что P = Fтяж, если тело и опора неподвижны или движутся равномерно и прямолинейно. Следовательно, вес тела можно определить по формуле:

Пример . На столе стоит чайник с водой массой 1,5 кг. Определите силу тяжести и вес чайника. Покажите эти силы на рисунке 68.

Дано :

g ≈ 10 Н/кг

Решение:

Fтяж = P ≈ 10 Н/кг · 1,5 кг = 15 Н.

Ответ : Fтяж = P = 15 Н.

Теперь изобразим силы графически. Выберем масштаб. Пусть 3 Н будет равен отрезку длиной 0,3 см. Тогда силу в 15 Н. необходимо начертить отрезком длиной 1,5 см.

Следует учитывать, что сила тяжести действует на тело, а значит, приложена к самому телу. Вес действует на опору или подвес, т. е. приложен к опоре, в нашем случае к столу.

Динамометр.

Простейший динамометр.

На практике часто приходится измерять силу, с которой одно тело действует на другое. Для измерения силы используется прибор, который называется динамометр (от греч. динамис - сила, метрео - измеряю).

Динамометры бывают различного устройства. Основная их часть - стальная пружина, которой придают разную форму в зависимости от назначения прибора. Устройство простейшего динамометра основывается на сравнении любой силы с силой упругости пружины.

Простейший динамометр можно изготовить из пружины с двумя крючками, укрепленной на дощечке. К нижнему концу пружины прикрепляется указатель, а на доску наклеивается полоска бумаги.

Отметим на бумаге черточкой положение указателя при не натянутой пружине. Эта отметка будет нулевым делением.

Ручной динамометр - силомер.

Затем к крючку будем подвешивать груз массой 1/9,8 кг, т. е. 102 г.На этот груз будет действовать сила тяжести 1 Н. Под действием этой силы (1 Н) пружина растянется, указатель опустится вниз. Его новое положение отмечаем на бумаге и ставим цифру 1. После чего, подвешиваем груз массой 204 г и ставим отметку 2. Это означает, что в таком положении сила упругости пружины равна 2 Н. Подвесив груз массой 306 г, наносим отметку 3, и т. д.

Для того, чтобы нанести десятые доли ньютона, надо нанести деления - 0,1; 0,2; 0,3; 0,4 и т. д. Для этого расстояния между каждыми целыми отметками делятся на десять равных частей. Так можно сделать, учитывая, что сила упругости пружины Fупр увеличивается во столько раз, во сколько увеличивается ее удлинение Δl . Это следует из закона Гука: Fупр = kΔl, т. е. сила упругости тела при растяжении прямо пропорциональна изменению длины тела.

Тяговый динамометр.

Проградуированная пружина и будет простейшим динамометром.

С помощью динамометра измеряется не только сила тяжести, но и другие силы, такие как - сила упругости, сила трения и т. д.

Так, например, для измерения силы различных мышечных групп человека используется медицинские динамометры.

Для измерения мускульной силы руки при сжатии кисти в кулак применяется ручной динамометр - силомер .

Применяются также ртутные, гидравлические, электрические и другие динамометры.

В последнее время широко применяются электрические динамометры. У них имеется датчик, преобразующий деформацию в электрический сигнал.

Для измерения больших сил, таких, например, как тяговые усилия тракторов, тягачей, локомотивов, морских и речных буксиров, используют специальные тяговые динамометры . Ими можно измерить силы до нескольких десятков тысяч ньютонов.

В каждом подобном случае можно заменить несколько сил, в действительности приложенных к телу, одной силой, равноценной по своему действию этим силам.

Сила, которая производит на тело такое же действие, как несколько одновременно действующих сил, называется равнодействующей этих сил.

Найдем равнодействующую этих двух сил, действующих на тело по одной прямой в одну сторону.

Обратимся к опыту. К пружине один под другим подвесим два груза массой 102 г и 204 г, т. е. весом 1 Н и 2 Н. Отметим длину, на которую растянулась пружина. Снимем эти грузы заменим одним грузом, который растягивает пружина на такую же длину. Вес этого груза оказывается равным 3 Н.

Из опыта следует, что: равнодействующая сил, направленных по одной прямой в одну и ту же сторону, а ее модуль равен сумме модулей составляющих сил.

На рисунке равнодействующая сил, действующих на тело, обозначена буквой R, а слагаемые силы - буквами F 1 и F 2 . В этом случае

Выясним теперь, как найти равнодействующую двух сил, действующих на тело по одной прямой в разные стороны. Тело - столик динамометра. Поставим на столик гирю весом 5 Н, т.е. подействуем на него силой 5 Н, направленной вниз. Привяжем к столику нить и подействуем на него с силой, равной 2 Н, направленной вверх. Тогда динамометр покажет силу 3 Н. Эта сила есть равнодействующая двух сил: 5 Н и 2Н.

Итак, равнодействующая двух сил, направленных по одной прямой в противоположные стороны, направлена в сторону большей по модулю силы, а ее модуль равен разности модулей составляющих сил (рис.):

Если к телу приложены две равные и направленные противоположно силы, то равнодействующая этих сил равна нулю. Например, если в нашем опыте за конец потянуть силой в 5 Н, то стрелка динамометра установится на нулевом делении. Равнодействующая двух сил в этом случае равна нулю:

Сани скатившиеся с горы, в скором времени останавливаются.

Сани, скатившись с горы, движутся по горизонтальному пути неравномерно, скорость их постепенно уменьшается, и через некоторое время они останавливаются. Человек, разбежавшись, скользит на конька по льду, но, как бы ни был гладок лед, человек все-таки останавливается. Останавливается и велосипед, когда велосипедист прекращает крутить педали. Мы знаем, что причиной таких явлений, является сила. В данном случае это сила трения.

При соприкосновении одного тела с другим получается взаимодействие, препятствующее их относительному движению, которое называется трением . А сила, характеризующая это взаимодействие называется силой трения.

Сила трения - это еще один вид силы, отличающийся от рассмотренных ранее силы тяжести и силы упругости.

Другая причина трения - взаимное притяжение молекул соприкасающихся тел.

Возникновение силы трения обусловлено главным образом первой причиной, когда поверхности тел шероховаты. Но если поверхности хорошо отполированы, то при соприкосновении часть их молекул располагается очень близко друг от друга. В этом случае начинает заметно проявляться притяжение между молекулами соприкасающихся тел.

Опыт с бруском и динамометром. Измеряем силу трения.

Силу трения можно уменьшить во много раз, если ввести между трущимися поверхностями смазку. Слой смазки разъединяет поверхности трущихся тел. В этом случае соприкасаются не поверхности тел, а слои смазки. Смазка же в большинстве случаев жидкая, а трение слоев жидкости меньше, чем твердых поверхностей. Например, на коньках малое трение при скольжении по льду объясняется также действием смазки. Между коньками и льдом образуется тонкий слой воды. В технике в качестве смазки широко применяют различные масла.

При скольжении одного тела по поверхности другого возникнет трение, которое называют трением скольжения. Например, такое трение возникнет при движении саней и лыж по снегу.

Если же одно тело не скользит, а катится по поверхности другого, то трение, возникающее при этом, называют трением качения . Так, при движении колес вагона, автомобиля, при перекатывании бревен или бочек по земле проявляется трение качения.

Силу трения можно измерить. Например, чтобы измерить силу трения скольжения деревянного бруска по доске или по столу, надо прикрепить к нему динамометр. Затем равномерно двигать брусок по доске, держа динамометр горизонтально. Что при этом покажет динамометр? На брусок в горизонтальном направлении действуют две силы. Одна сила - сила упругости пружины динамометра, направленная в сторону движения. Вторая сила - это сила трения, направленная против движения. Так как брусок движется равномерно, то это значит, что равнодействующая этих двух сил равна нулю. Следовательно, эти силы равны по модулю, но противоположны по направлению. Динамометр показывает силу упругости (силу тяги), равную по модулю силе трения.

Таким образом, измеряя силу, с которой динамометр действует на тело при его равномерном движении, мы измеряем силу трения.

Если на брусок положить груз, например гирю, и измерить по описанному выше способу силу трения, то она окажется больше силы трения, измеренной без груза.

Чем больше сила, прижимающая тело к поверхности, тем больше возникающая при этом сила трения.

Положив деревянный брусок на круглые палочки, можно измерить силу трения качения. Она оказывается меньше силы трения скольжения.

Таким образом, при равных нагрузках сила трения качения всегда меньше силы трения скольжения . Именно поэтому, люди еще в древности применяли катки для перетаскивания больших грузов, а позднее стали использовать колесо.

Трение покоя.

Трение покоя.

Мы познакомились с силой трения, возникающей при движении одного тело по поверхности другого. Но можно ли говорить о силе трения между соприкасающимися твердыми телами, если они находятся в покое?

Когда тело находится в покое на наклонной плоскости, оно удерживается на ней силой трения. Действительно, если бы не было трения, то тело под действием тяжести соскользнуло бы вниз по наклонной плоскости. Рассмотрим случай, когда тело находится в покое на горизонтальной плоскости. Например, на полу стоит шкаф. Попробуем его передвинуть. Если бы шкаф нажать слабо, то с места он не сдвинется. Почему? Действующая сила в этом случае уравновешивается силой трения между полом и ножками шкафа. Так как эта сила существует между покоящимися друг относительно друга телами, то эта сила называется силой трения покоя.

В природе и технике трение имеет большое значение. Трение может быть полезным и вредным. Когда оно полезно, его стараются увеличить, когда вредно - уменьшить.

Без трения покоя ни люди, ни животные не смогли бы ходить по земле, так как при ходьбе мы отталкиваемся от земли. Когда трение между подошвой обуви и земли (или льдом) малó, например, в гололедицу, то отталкиваться от земли очень трудно, ноги скользят. Чтобы ноги не скользили, тротуары посыпаются песком. Это увеличивает силу трения между подошвой обуви и льдом.

Не будь трения, предметы выскальзывали бы из рук.

Сила трения останавливает автомобиль при торможении, но без трения он не смог бы стоять на месте, буксовал. Что-бы увеличить трение, поверхность шин у автомобиля делаются с ребристыми выступами. Зимой, когда дорога бывает особенно скользкая, ее посыпают песком, очищают ото льда.

У многих растений и животных имеются различные органы, служащие для хватания (усики растений, хобот слона, цепкие хвосты лазающих животных). Все они имеют шероховатую поверхность для увеличения трения.

Вкладышем . Вкладыши делают из твердых металлов - бронзы, чугун или стали. Внутреннюю поверхность их покрывают особыми материалами, чаще всего баббитом (это сплав свинца или олова с другими металлами), и смазывают. Подшипники, в которых вал при вращении скользит по поверхности вкладыша, называют подшипниками скольжения .

Мы знаем, что сила трения качения при одинаковой нагрузке значительно меньше силы трения скольжения. На этом явлении основано применение шариковых и роликовых подшипников. В таких подшипниках вращающийся вал не скользит по неподвижному вкладышу подшипника, а катится по нему на стальных шариках или роликах.

Устройство простейших шарикового и роликового подшипников изображено на рисунке. Внутреннее кольцо подшипника, изготовленное из твердой стали, насажено на вал. Наружное же кольцо закреплено в корпусе машины. При вращении вала внутреннее кольцо катится на шариках или роликах, находящихся между кольцами. Замена в машине подшипников скольжения шариковыми или роликовыми подшипниками позволяет уменьшить силу трения в 20-30 раз.

Шариковые и роликовые подшипники используются в разнообразных машинах: автомобилях, токарных станках, электрических двигателях, велосипедах, и т. д. Без подшипников (они используют силу трения), невозможно представить современную промышленность и транспорт.